Exercise 1

Prove Rudin’s Theorem 7.9: Suppose \(\{f_n\} \) is a sequence of functions, \(f_n : E \to \mathbb{R} \). Suppose \(\lim_{n \to \infty} f_n(x) = f(x) \) for all \(x \in E \), i.e. \(f_n \to f \) pointwise on \(E \). Put \(M_n = \sup \{|f_n(x) - f(x)| : x \in E\} \). Then \(f_n \to f \) uniformly on \(E \) if and only if \(\lim_{n \to \infty} M_n = 0 \).

Exercise 2 (Rudin 7.1)

Suppose \(f_n : E \to \mathbb{R} \) is a sequence of functions. We say that \(\{f_n\} \) is uniformly bounded on \(E \) if there exists some \(M \in \mathbb{R} \) such that for all \(x \in E \) and all \(n \in \mathbb{N} \) we have \(|f_n(x)| < M \).

Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

Exercise 3 (Rudin 7.2)

If \(\{f_n\} \) and \(\{g_n\} \) are sequences of functions mapping \(E \to \mathbb{R} \), and converging uniformly on \(E \), prove that \(\{f_n + g_n\} \) converges uniformly on \(E \). If in addition each \(f_n \) is bounded and each \(g_n \) is bounded, prove that \(\{f_n g_n\} \) converges uniformly on \(E \).

Exercise 4 (Rudin 7.3)

Construct sequences \(\{f_n\}, \{g_n\} \) of functions mapping \(X \to \mathbb{R} \) (with \(X \) some metric space), such that \(\{f_n\} \) and \(\{g_n\} \) both converge uniformly on \(X \), but \(\{f_n g_n\} \) does not converge uniformly on \(X \).