True or False. If true, sketch a proof in a few lines. If false, state a counterexample (in this case you do not have to prove that it is a counterexample.) You may use without proof anything that we proved in class or anything that is proved in Rudin chapters 1-3.

Throughout, let X denote a metric space.

1. If $E \subset X$ is closed, then any subset of E is also closed.

 False. For example, take $X = \mathbb{R}$; then $E = \mathbb{R}$ is closed, but the subset $(0, 1) \subset E$ is not closed.

2. If $E \subset Y \subset X$, and E is open when considered as a subset of the metric space Y, then E is open when considered as a subset of the metric space X.

 False. For example, take $X = \mathbb{R}^2$, $Y = \{(x, 0) \mid x \in \mathbb{R}\} \subset X$, and $E = \{(x, 0) \mid 0 < x < 1\} \subset Y \subset X$. Then E is open when considered as a subset of Y (this is just the fact that $(0, 1)$ is an open subset of \mathbb{R}), but E is not open when considered as a subset of X (since any neighborhood of a point in E will contain some points with $y \neq 0$.)

3. If $E \subset X$ is countable, then \overline{E} is also countable.

 False. For example, take $X = \mathbb{R}$ and $E = \mathbb{Q}$. Then E is countable, but $\overline{E} = \mathbb{R}$ (as shown in one of the homework assignments), which is not countable.

4. If $E \subset X$ is connected, then \overline{E} is also connected.

 True. We will show the contrapositive: if \overline{E} is disconnected, then E is disconnected. Suppose \overline{E} is disconnected; then $\overline{E} = A \cup B$ with A, B nonempty and separated. Then $E = (A \cap E) \cup (B \cap E)$. Also $A \cap E$ and $B \cap E$ are separated: this follows from the fact that $\overline{A \cap E} = \overline{A} \cap \overline{E} \subset \overline{A}$, hence $\overline{A \cap E} \cap B = \emptyset$ (since A and B are separated), hence $\overline{A \cap E} \cap (B \cap E) = \emptyset$; similarly $\overline{B \cap E} \cap (A \cap E) = \emptyset$. This almost shows that E is disconnected, but we still need to check that $A \cap E$ and $B \cap E$ are nonempty. For this, assume that $A \cap E = \emptyset$. Then $\overline{A \cap E} = \overline{A} \cap \overline{E} = \emptyset$ also. Then in particular $A \cap \overline{E} = \emptyset$. But we know $\overline{E} = A \cup B$. It follows that $\overline{E} = B$. This contradicts the fact that A, B are separated and A nonempty. Thus our assumption was false, so $A \cap E$ is nonempty; similarly $B \cap E$ is nonempty.

5. If $K_n \subset X$ is compact for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} K_n$ is compact.

 False. For example, say $X = \mathbb{R}$ and $K_n = \{n\} \subset \mathbb{R}$. Each K_n contains a single point, hence in particular K_n is a finite set, hence compact; but $\bigcup_{n=1}^{\infty} K_n = \mathbb{N}$ which is not bounded and hence not compact.
6. If \(\{p_n\} \) is a sequence in \(\mathbb{R} \), with \(|p_n| \to 5 \), then \(\{p_n\} \) has a convergent subsequence.

True. Since \(|p_n| \to 5 \), there exists some \(N \) for which \(n > N \implies |p_n| - 5| < 1 \), hence \(|p_n| < 6 \). Then let \(M = \max\{|p_1|, |p_2|, \ldots, |p_N|, 6\} \); for all \(n \) we have \(|p_n| \leq M \), so \(\{p_n\} \) is a bounded sequence in \(\mathbb{R} \), thus it has a convergent subsequence.

7. If \(E \subset \mathbb{R} \) is compact, then \(\{(x, y) \mid x \in E, y \in E\} \subset \mathbb{R}^2 \) is compact.

True. Let \(F = \{(x, y) \mid x \in E, y \in E\} \). Since \(F \subset \mathbb{R}^2 \), to show it is compact, it suffices to show that it is closed and bounded. First we show \(F \) is bounded. We know \(E \) is compact, so \(E \) is bounded, i.e. there is some \(M \) for which \(x \in E \implies |x| < M \). Then for \((x, y) \in F \) we have \(\sqrt{|x|^2 + |y|^2} < |x| + |y| < 2M \). Thus \(F \) is bounded. Next we show \(F \) is closed. For this, suppose \((x, y) \) is a limit point of \(F \). Then for every \(\epsilon > 0 \) there exists some \((x', y') \in F \) with \((x', y') \neq (x, y) \) and \(\sqrt{|x' - x|^2 + |y' - y|^2} < \epsilon \); in particular \(|x' - x| < \epsilon \). Thus either \(x \in E \) or \(x \) is a limit point of \(E \), in which case again \(x \in E \), since we know \(E \) is compact and thus closed. So \(x \in E \). Similarly \(y \in E \). Thus \((x, y) \in F \), and so \(F \) is closed.