This room is not a vector space: what does it mean to "add" two points?

The precise structure it has is well captured by the notion of affine space.

Def A vector space (over \(\mathbb{R} \)): an affine space \(A \) over \(V \) is a set with a free transitive action of \(V \).

Think of \(x \in A \) as points, \(\vec{x} \in V \) as arrows.

Write the action as \(+ : A \times V \to A \) \(x \in A, \vec{x} \in V \mapsto x + \vec{x} \in A \)

Operations

\[
\begin{align*}
+ & : V \times V \to V \\
- & : V \times V \to V \\
\cdot & : \mathbb{R} \times V \to V
\end{align*}
\]

Standard example:

\[
\begin{align*}
V &= \mathbb{R}^n = \{(\vec{x}_1, \ldots, \vec{x}_n) : \vec{x}_i \in \mathbb{R}\} \\
A &= \mathbb{R}^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{R}\}
\end{align*}
\]

\(+ : A \times V \to A \) is componentwise addition

Derivative

Say \(A \) affine space over \(V \), \(A' \) affine space over \(V' \), \(U \subset A \) open, \(f : U \to A' \), \(p \in U \), \(\vec{x} \in V \).

Def (Directional derivative) \(\vec{x} f(p) = \lim_{t \to 0} \frac{f(p+t\vec{x})-f(p)}{t} \in V' \) (if this limit \(\exists \))
Thm/Def If \(\exists f(p) \) exists \(\forall p \in U, \exists \in V \)
and \(\exists f: U \rightarrow V' \) is continuous \(\forall \exists \in V \)
then \(\exists f(p) \) is a linear funcn of \(\exists \).

It is denoted \(df_p \).

Pf On choosing a basis, this becomes a standard statement from multivariate calculus.

\[df_p : V \rightarrow V', \text{ ie } df_p \in \text{Hom}(V, V') \]
\[\text{or, } df : U \rightarrow \text{Hom}(V, V') \]

Def \(f \) is smooth in \(U \) if \(\forall \exists \in \mathbb{R} \) and \(\exists_1, \ldots, \exists_5 \in V, \exists_1, \ldots, \exists_5 f \in V' \) exists.

Thm If \(f \) is smooth on \(U \), and \(\exists, \exists_2 \in V \), then \(\exists, \exists f = \exists_2, \exists f \).

Pf On choosing a basis, this follows from the equality of mixed partials.

Thm If \(f : A \rightarrow A' \) and \(g : A' \rightarrow A'' \) smooth
then \(g \circ f \) is smooth and \([d(g \circ f)]_p = (dg) \circ (df)_p \)

Pf On choosing a basis, this is the multivariable chain rule.