Stokes' Theorem

Motivating example: \(I = [a,b] \)
\[
\int_I \, df = \int_a^b f'(x) \, dx = f(b) - f(a) = \int_{\partial I} f
\]

Theorem (Stokes' Theorem): \(M \) a manifold with boundary, \(\omega \in \Omega^{m-1} (M) \):
\[
\int_M \, d\omega = \int_{\partial M} \omega
\]

Proof (Pf): Take a partition of unity \(\rho_i \) relative to covering by charts \((U_i, x_i) \). Let \(\omega_i = \rho_i \omega \).
Thus reduce to case where \(\supp \omega_i \subset U_i \) for \((U_i, x_i) \) a chart.

Then, \(\int_M \, d\omega = \sum_i \int_{x(U_i)} \omega_i \, \gamma = \sum_i \int_{x(U_i)} \omega_i \, d\gamma \) where \(\gamma = (x^{-1})^* \omega = f_i \, dx^2 \)
\[
d\gamma = \frac{\partial f_i}{\partial x^j} \, dx^j \wedge dx^1
\]

If \(U \) is an interior chart:
\[
\int_M \, d\omega = \sum_i \int_{x(U_i)} \omega_i \, d\gamma
\]
\[
= \sum_i \int_{x(U_i)} \frac{\partial f_i}{\partial x^j} \, dx^j \wedge dx^1 \wedge \ldots \wedge dx^m = 0
\]

If \(U \) is a boundary chart:
\[
\int_M \, d\omega = \sum_i \int_{x(U_i)} \omega_i \, \gamma = \int_{\partial M} \omega
\]
\[
= \sum_i \int_{\partial M} \omega_i
\]

(With the induced orientation on \(\partial M \) — since \(dx^1 \wedge dx^2 \wedge \ldots \wedge dx^m \) is \(\varepsilon \)-oriented on \(M \) so that \(dx^1 \wedge \ldots \wedge dx^m \) is \(\varepsilon \)-oriented on \(\partial M \))

Example (Ex):
\[
\omega = f \, dx + g \, dy
\]
\[
d\omega = \left(\frac{\partial^2 g}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right) \, dx \wedge dy
\]
\[
\int_M \, d\omega = \int_{\partial M} \omega = \int \omega = \int f \, dx + g \, dy
\]

This is standard "Stokes' Theorem": for a vector field \(\mathbf{v} = [f, g] \) in \(\mathbb{R}^2 \), \(\text{curl} \mathbf{v} = \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \),
\[
\int_M \, \text{curl} \mathbf{v} \, dA = \int_{\partial M} \mathbf{v} \cdot d\mathbf{s}
\]
\[\omega = \nabla \cdot \mathbf{v} = \int \mathrm{div} \, \mathbf{v} = \int_{\partial M} \mathbf{v} \cdot \mathbf{n} \, \mathrm{d}S \]

This is "divergence theorem": \(\mathbf{v} = [f, g, h] \) in \(\mathbb{R}^3 \),
\[\mathrm{div} \, \mathbf{v} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z} \quad \mathbf{n} \, \mathrm{d}S = [dxdy, dzdx, dxzd] \]

\[\int_{\partial M} \mathbf{v} \cdot \mathbf{n} \, \mathrm{d}S = \int_{\partial M} \mathrm{div} \, \mathbf{v} \, \mathrm{d}S \]

Case: If \(\partial M = \emptyset \) and \(\omega \mathcal{H}^m(M) \) then \(\int_{M} \omega = 0 \).

Let's practice integrating a bit.

Ex: \(M = S' \).

View \(S' \) as \([0, \pi] \times \{0 \leq \theta \leq 2\pi\} \). Fix some \(f: \mathbb{R} \rightarrow \mathbb{R} \), with \(f(2\pi \theta) = f(\theta) \).

\(f(t) \, dt \) on \((0, 2\pi) \) extends to an element of \(\Omega'(S') \). To see this explicitly, cover by 2 charts \(U_1, U_2 \)

\[U_1 = \{(0, 2\pi)\} \]
\[U_2 = \{[0, \pi] \times (2\pi-\pi, 2\pi]\} \]

Coordinates:
\[x_1: U_1 \rightarrow \mathbb{R} \]
\[x_1(t) = t \]
\[x_2: U_2 \rightarrow \mathbb{R} \]
\[x_2(t) = \begin{cases} t & \text{if } t \leq \pi \\ t + 2\pi & \text{if } t > \pi \end{cases} \]

Then define \(\omega = \left\{ \begin{array}{ll} f(x_1) \, dx_1 & \text{on } U_1 \\ f(x_2) \, dx_2 & \text{on } U_2 \end{array} \right. \). They agree on \(U_1 \cap U_2 \) since here \(dx_1 = dx_2 = dt \) and \(f(x_1) = f(x_2) \) using periodicity.

Now to integrate:
\[x_1^{-1}(f(x_1) \, dx_1) = f(x) \, dx \quad x_2^{-1}(f(x_2) \, dx_2) = f(x) \, dx \]
\[\Omega'_1((0, 2\pi)) \quad \sup \, x \in U_1, \quad \Omega'_2((2\pi-\pi, 2\pi+\pi)) \]
\[x_1^{-1} \rho_1(x) = \left\{ \begin{array}{ll} \rho_1(x) & \text{for } x \in (0, 2\pi) \\ \rho_1(x-2\pi) & \text{for } x \in [2\pi, 2\pi+\pi] \end{array} \right. \]
\[x_2^{-1} \rho_2(x) = \left\{ \begin{array}{ll} \rho_2(x) & \text{for } x \in (2\pi-\pi, 2\pi] \\ \rho_2(x-2\pi) & \text{for } x \in [2\pi, 2\pi+\pi] \end{array} \right. \]

Then \(\int_{M} \omega = \int_{0}^{2\pi} \rho_1(x) \, f(x) \, dx + \int_{2\pi-\pi}^{2\pi} \rho_2(x) \, f(x) \, dx + \int_{2\pi}^{2\pi+\pi} \rho_2(x-2\pi) \, f(x) \, dx \)
\[= \int_0^{2\pi} [\rho_1(x) + \rho_2(x)] f(x) \, dx \]
\[= \int_0^{2\pi} f(x) \, dx \]

Just as we would naively have expected!