Lefschetz theory

\textbf{Def} \quad f: M \to M, M \text{ compact oriented}, T_f^p = \{(p, f(p)): p \in M\} \subset M \times M:

\[L(f) = \int (\Delta, T_f) \quad (\text{"Lefschetz number"}) \]

Some kind of measurement of the fixed points of \(f \) — if they're isolated, counts them with signs.

\textbf{Ex} \quad L(1_M) = X(M)

\textbf{Prop} \quad 1) If \(f \sim g \) then \(L(f) = L(g) \).

2) If \(L(f) \neq 0 \) then \(f \) has a fixed point.

\textbf{Pf} \quad \text{Easy.}

\textbf{Def} \quad 1) f: M \to M, M \text{ compact oriented}: p \in M \text{ is Lefschetz fixed point of } f \text{ if } T_f^p \pitchfork \Delta_M \text{ at } (p, p).

2) \(f \) \text{ is Lefschetz if all its fixed pts are Lefschetz, i.e., } T_f^p \pitchfork \Delta_M.

\textbf{Prop} \quad f: M \to M, M \text{ compact oriented}: \exists g \sim f \text{ s.t. } g \text{ is Lefschetz.}

\textbf{Pf} \quad \text{Consider } F: M \times S \to M \text{ s.t. } F(\cdot, 0) = f \text{ and } F(p, \cdot) \text{ submersion } \forall p \text{ (we showed this earlier).}

\[\text{This } \Rightarrow G: M \times S \to M \times M \text{ is also submersion.} \]

\[(p, s) \mapsto (p, F(p, s)) \]

Then apply transversality then \(\Rightarrow \) for almost every \(s \in S \), \([p \mapsto (p, F(p, s))] \pitchfork \Delta_M. \]

\textbf{What Lefschetz fixed pt are like:}

\[\Delta \]

\[T_f^p \cap T_f^p \Delta = \{0\} \]

\[\{ (\xi, df_p(\xi)) \} \quad \{ (\xi, \xi) \} \]

\text{Hence } df_p \text{ has no eigenvalue } +1

\text{(infinitesimal analogue of saying } p \text{ is isolated)}

\textbf{Def} \quad p \text{ Lefschetz fixed pt of } f: L_p(f) \text{ ("lefschetz#") is critical of } p \text{ to } L(f). \quad (= \pm 1)

\textbf{Prop} \quad L_p(f) \text{ is the sign of } \det(df_f-1).

\textbf{Pf} \quad \text{Take } \{e_1, \ldots, e_m\} \text{ t.v. oriented basis for } T_p M.

\text{Lefschetz # is the sign of the basis}

\[\{ (e_1, e_1), (e_2, e_2), \ldots, (e_m, e_m), (e_1, df_p e_1), \ldots, (e_m, df_p e_m) \} \]

\text{relative to orientation of } M \times M.
Now make "row operations" on this basis:
\[
\sim \{ (e_1, e_2), \ldots, (e_m, e_m), (0, (dp-1)e_1), \ldots, (0, (dp-1)e_m) \}
\]
\[
\sim \{ (e_1', e_2'), \ldots, (e_m', e_m'), (0, (dp-1)e_1'), \ldots, (0, (dp-1)e_m') \}
\]
which differs from the basis for \(T_{(p,p)} \mathbb{M}/\mathbb{M} \) by making
\[
\begin{pmatrix}
1 & 0 \\
0 & dp-1
\end{pmatrix}
\]

Ex: case \(m = 2 \), if \(dp \sim \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \):

- \(\lambda_1, \lambda_2 > 1 \):
 \(L_p(f) = 1 \)
- \(\lambda_1, \lambda_2 < 1 \):
 \(L_p(f) = 1 \)
- \(\lambda_1 > 1, \lambda_2 < 1 \):
 \(L_p(f) = -1 \)
- \(\lambda_1 < 1, \lambda_2 > 1 \):
 \(L_p(f) = 1 \)

Cor: \(\chi(S^2) = 2 \).

Pf
Let \(f: S^2 \to S^2 \) be flow along a vector field
pointing "south", vanishing at poles.
2 fixed pts with \(L_p(f) = +1 \).
So \(L(f) = 2 \); and \(f \sim 1 \).
Thus \(L(f) = 2 \).

Cor: \(\chi(\Sigma) = 2 - 2g \) for \(\Sigma \) of genus \(g \).

Pf Sketch Flow down along the surface:
\(f: \Sigma \to \Sigma \) has 2 fixed pts
with \(L_p(f) = +1 \), \(2g \) with \(L_p(f) = -1 \).

How about maps which are not Lefschetz? Want to describe directly the control from degenerate fixed pts.
We can "split" them:

Prop p fixed pt of \(f: M \to M \), U nbhd of p cont. no other fixed pt
\(\Rightarrow \exists g: M \to M \), f \sim g, \(f \sim g \) outside compact \(K \subset U \), \(g|_U \) Lefschetz.

Pf Say \(U \subset \mathbb{R}^m \) and \(p = 0 \). Take \(\rho: \mathbb{A}^m \to [0,1] \) smooth, \(\rho = 1 \) on \(V \subset U \) open,
For $\sigma \in \mathbb{A}^m$ let $g(x) = f(x) + \rho(x)\sigma$. For $\|x\|$ small enough, g has no fixed pts on $U \setminus V$ (show).

Choose a regular value $x \mapsto f(b) - x$ (Sard).

All fixed pts of g have $\sigma = f(x) - x$, thus $df_x - 1$ is $= 0$, i.e. they are Lefschetz. Then transfer to a general M is straightforward.

Now, how to detect the local contribution from an isolated fixed pt. without splitting it?

\[\begin{array}{c}
\begin{array}{c}
\circ \\
[xy, x^2-y^2, xy]
\end{array}
\end{array} \quad \mapsto \quad \begin{array}{c}
\begin{array}{c}
\circ \\
[xy, x^2-y^2-1, xy]
\end{array}
\end{array} \]

Look at winding of f near the fixed point:

Def/Prop For $f : \mathbb{A}^m \to \mathbb{A}^m$ s.t. $p=0$ is isolated fixed point, fix a ball $B_\varepsilon(0)$ containing no other fixed point, then define Lefschetz $L_0:f$,

\[L_0(f) = \text{deg} \left(\varphi_\varepsilon : \partial B_\varepsilon(0) \to S^{m-1} \right) \]

\[\begin{array}{c}
\varphi_\varepsilon : \\
\begin{array}{c}
\bigoplus \bigoplus \\
\begin{array}{c}
\text{S}^1 \\
\int f(x) - x \\
\int \|f(b) - x\|
\end{array}
\end{array}
\end{array} \]

If p is Lefschetz fixed point, this agrees with our previous def of $L_0(f)$.

Pf Well defined: changing ε changes the map φ_ε by a homotopy. For p Lefschetz, make a homotopy $f \to g$ on B_ε, where $g(x) = (df_p(0))(x)$ (use Taylor thm). Thus we want the degree of $x \mapsto \frac{(df_p(0))x}{\|df_p(0)x\|}$

then, using the fact that GL_ε is connected [Exercise], can

homotopy this map to $x \mapsto \frac{x}{\|x\|}$ if $df_p - 1$ preserves orientation

\[\text{or } x \mapsto \frac{Rx}{\|x\|} \quad \text{Rx} = (-x', \ldots, x^m) \quad \text{if } df_p - 1 \text{ reverses orientation} \]

and note these maps have degree ± 1 as needed.
Prop: f: \(\mathbb{R}^m \rightarrow \mathbb{R}^m \) isolated fixed point at 0, \(B = B_\varepsilon(0) \), \(\overline{B} \) has no other fixed point of \(f \)

Then

\[
L_0(f) = \sum_{p \in \overline{B} \setminus \{0\}} L_p(g).
\]

Proof:

\[L_0(f) = \text{degree of } x \mapsto \frac{f(x) - x}{\|f(x) - x\|} \text{ on } \overline{B} = \text{degree of } G: x \mapsto \frac{g(x) - x}{\|g(x) - x\|} \text{ on } \overline{B} \]

And \(\mathcal{C} = \overline{B} - \bigcup_i \overline{B}_i \), \(G \) extends to \(C \), so \(\deg(G) \) on \(\mathcal{C} \) is 0,

so

\[L_0(f) = \text{degree of } G \text{ on } \bigcup_i \overline{B}_i = \sum_{p \in \bigcup_i \overline{B}_i \setminus \{0\}} L_p(g). \]

Def/Prop: For \(f: M \rightarrow M \) s.t. \(p \) is isolated fixed point, \(L_p(f) = L_p(x \cdot f \cdot x^{-1}) \) for \((x,y)\) chart at \(p \)

Proof:

Check well defined: if \(p \) is Lefschetz then \(L_p(x \cdot f \cdot x^{-1}) = \text{sgn } \det(d(x \cdot f \cdot x^{-1}) - 1) \)

\[= \text{sgn } \det(d(y \cdot x^{-1}) \cdot (d(x \cdot f \cdot x^{-1}) - 1) \cdot d(x \cdot y^{-1}) \]

\[= \text{sgn } \det(d(y \cdot f \cdot y^{-1}) - 1) \]

If \(p \) is not Lefschetz then break it into Lefschetz fixed pts, use the last Prop to see that \(L_p(f) \) is a sum of their indep. Lefschetz #s, which are indep of chart by the above.

Prop: \(f: M \rightarrow M \) smooth, finite # fixed pts:

\[L(f) = \sum_{p \in \text{fixed pt}} L_p(f) \]

Proof:

Periods f around each fixed pt do \(g \) Lefschetz, then \(L(f) = \sum_{p \in \text{fixed pt}} L_p(g) \) and by the above Prop this is also \(\sum_{p \in \text{fixed pt}} L_p(f) \).