Supersymmetric gauge theory

We are now going to write a theory which extends the Yan-Mills action. Fix an auxiliary \(R \)-symmetry vector space \(R \cong \mathbb{C}^2 \).

\[(P, \mathcal{O}) : \text{principal } G \text{-bundle w/conn over } X \]

\[\lambda^\pm \in T'(S^\pm \otimes \mathcal{O}_{C, P} \otimes R) \]

\[\phi \in T'(\mathcal{O}_{C, P}) \]

\[D \in T'(\mathcal{O}_{C, P} \otimes \text{Sym}^2(R)) \]

Wrt a basis of \(R \), expand \(\lambda^\pm \) as pair \(\lambda_1^\pm, \lambda_2^\pm \in T'(S^\pm \otimes \mathcal{O}_{C, P}) \), also expand \(D \) as triplet \(D_{11}, D_{12}, D_{22} \); let \(\delta \) denote herm. metric in \(R \), \(\varepsilon \in \wedge^2(R) \) of unit norm.

\[
S = \frac{1}{g^2} \int_X \left(-\frac{1}{4} F_{\lambda^+} \ast F + \nabla^\lambda \phi \nabla^\lambda \phi - i \varepsilon_{\lambda^+} \left< \lambda^+, \nabla \lambda^+ \right> \right.
\]

\[
+ \frac{1}{4} \delta_{\lambda^+} D_{\lambda^+} D_{\lambda^+} - \frac{1}{2} \left[\phi, \overline{\phi} \right]^2 - i \sqrt{2} \varepsilon_{\lambda^+} \left< \lambda^+, [\overline{\lambda}, \lambda] \right> + i \sqrt{2} \varepsilon_{\lambda^+} \left< \lambda^+, [\phi, \overline{\lambda}] \right> \right)
\]

\[
+ \frac{i}{4\sqrt{2}} \int_X \text{Tr}(F \ast F)
\]

\[
\text{usual minimally coupled kinetic terms}
\]

\[
\text{usual minimally coupled kinetic terms}
\]

(If we analytically continued to Minkowski signature and put \(\lambda^+ = \overline{\lambda} \), then this would be naturally real.) Note \(D \) enters quadratically and can be integrated out for free ("auxiliary field") but it's convenient to keep it around, as we'll see.

This action has a lot of symmetries:

- gauge symmetry \(G \)
- Lorentz symmetry \(\text{Spin}(4) \)
- translation vector fields \(P \) for \(v \in (T^* \mathbb{R}^4) \)
- "\(R \)-symmetry" \(SU(2) \) acting on \(\lambda^\pm \) and \(D \) (via its action on \(R \))
- "\(R \)-symmetry" \(U(1) \) acting by \(\lambda^\pm \mapsto e^{2i\theta} \lambda^\pm, \phi \mapsto e^{2i\theta} \phi \)
- odd symmetries: vector fields \(Q_3 \) for \(3 \in (S^+ \otimes S^-) \otimes R \)

\[\Rightarrow \text{for an infinitesimal param. } \xi \text{ we get var.} \]

\[\frac{\delta S}{\delta \phi} = \text{e.g. } \frac{1}{g} \nabla^\lambda \phi \nabla^\lambda \phi - \frac{1}{4} \varepsilon_{\lambda} \left< \lambda, \nabla \lambda \right> + \text{other terms} \]
\[\delta \phi = \sqrt{2} \varepsilon_{\nu} \xi_{\nu}^+ \xi_{\nu}^- \]
\[\delta A = \delta \nabla^\nu (\xi_{\nu}^+ \sigma_\mu \xi_{\nu}^-) - i \xi_{\nu}^+ \phi \overline{\phi} + i \left[\sigma_\mu, \xi_{\nu}^- \xi_{\nu}^+ \right] F^\mu \]
\[\delta \xi_{\nu}^\pm = \delta \nabla^\nu \xi_{\nu}^\pm - i \xi_{\nu}^\pm [\phi, \overline{\phi}] + i \left[\sigma_\mu, \xi_{\nu}^- \xi_{\nu}^+ \right] \xi_{\nu}^\pm F^\mu \]
\[\pm i \sqrt{2} \varepsilon_{\nu} \sigma^\mu \xi_{\nu}^\pm D^\mu \phi \]
\[\delta D_{\nu} = i \left[\xi_{\nu}^-, \delta \xi_{\nu}^+ \right] + i \sqrt{2} \xi_{\nu}^+ [\phi, \overline{\phi}] + i \sqrt{2} \xi_{\nu}^- [\phi, \overline{\phi}] + (\nu \leftrightarrow \omega) \]

These vector fields have \(\{ Q_{\xi_1}, Q_{\xi_2} \} = P_{T(\xi \xi)} \)

where \(T \) is a map of \(Sp(n) \) reps,

\[T: (S^+ S^{-}) \otimes (S^+ S^{-}) \rightarrow V \quad \left[V = \text{fundamental rep of } SO(4) \right] \]

\[[\text{induced from } S^+ S^- \rightarrow V \text{ and } R \otimes R \rightarrow V] \]

Because of these odd symmetries we will expect some nice localization for computing invariant observables. For example:

\[\delta \xi_{\nu}^\pm = 0 \] would say

\[\delta \nabla^\nu \xi_{\nu}^\pm - i \xi_{\nu}^\pm [\phi, \overline{\phi}] + i \left[\sigma_\mu, \xi_{\nu}^- \xi_{\nu}^+ \right] \xi_{\nu}^\pm F^\mu \pm i \sqrt{2} \varepsilon_{\nu} \sigma^\mu \xi_{\nu}^\pm D^\mu \phi = 0 \]

If we set \(D_{\nu} = 0 \) (as we should if we're interested in minimization of \(S \))

and also suppose \([\phi, \overline{\phi}] = \nabla \phi = 0\)

then this says \(\mathcal{F} \xi_{\nu}^\pm = 0 \) \((\mathcal{F} = [\sigma_\mu, \xi_{\nu}^\pm] F^\mu, \mathcal{F} : S^\pm \rightarrow S^\pm)\)

(i.e. \(\mathcal{F}(x) \xi_{\nu}^\pm = 0 \) \(\forall x \in \mathbb{R}^4 \))
Now we can ask: for which F does F annihilate some elt $\xi \in S^+ \oplus S^-$?

Answer: this happens only if F is either self-dual or anti-self-dual!

\[
\begin{bmatrix}
F & \rightarrow & 0 \\
\Lambda^2(\mathbb{R}^4) & \underset{\text{II}}{\rightarrow} & \text{So}(4) \\
\Lambda^2(\mathbb{R}^4)^+ \oplus \Lambda^2(\mathbb{R}^4)^- & \underset{\text{II}}{\rightarrow} & \text{su}(2) \times \text{su}(2)
\end{bmatrix}
\]

So, if we compute an observable that is annihilated by some Q_{\pm} (Q_{\mp}) we'd expect localization to moduli space of instantons (anti-instantons) on \mathbb{R}^4.

"Nekrasov formula" is of this sort, for a cleverly chosen observable...

But our interest now is in computing on some compact X, not on \mathbb{R}^4.

For this, we'll need to make a non-obvious modif" of the action...