The p-form Laplacian

On an oriented Riem manifold:

$$d: \Omega^p(M) \to \Omega^{p+1}(M)$$

Def

1. $d^*: \Omega^p(M) \to \Omega^{p-1}(M)$ given by $d^* \omega = (-1)^{n(p+1)+1} \ast d^* \omega$

2. $\Delta: \Omega^p(M) \to \Omega^p(M)$ given by $\Delta = dd^* + d^* d$

Prop

If M compact, for L^2 pairing $\langle \alpha, d^* \beta \rangle_{L^2} = \langle d\alpha, \beta \rangle_{L^2}$

Pf

$$\langle \alpha, d^* \beta \rangle_{L^2} = \int \langle \alpha, d^* \beta \rangle \text{ vol} = \int \alpha \wedge ^* \beta$$

$$= \langle d\alpha, \beta \rangle_{L^2} = \int d\alpha \wedge ^* \beta$$

$$= (-1)^{n+|\alpha|} \int \alpha \wedge d^* \beta$$

$$= (-1)^{|\alpha| + |\alpha|(n-|\alpha|)} \int \alpha \wedge ^*(d^* \beta)$$

$$= \langle \alpha, d^* \beta \rangle_{L^2} \quad \text{(since } |\alpha| + |\alpha|(n-|\alpha|) = n(|\beta|+1) + 1 \text{ mod } 2\text{)}$$

Thus we call d^* a "formal adjoint" to d.

Cor

If M compact, $\langle \alpha, \Delta \beta \rangle_{L^2} = \langle d\alpha, d\beta \rangle_{L^2} + \langle d^* \alpha, d^* \beta \rangle_{L^2} = \langle \Delta \alpha, \beta \rangle_{L^2}$

Cor

If M compact, $\Delta \alpha = \lambda \alpha$, then $\lambda \geq 0$; if $\lambda = 0$ then $d\alpha = 0$, $d^* \alpha = 0$.

Pf

$$||\alpha||_{L^2}^2 = \langle \alpha, \Delta \alpha \rangle_{L^2} = ||d\alpha||_{L^2}^2 + ||d^* \alpha||_{L^2}^2$$

Rk

This really needs M compact — e.g. if $M = \mathbb{R}$ and $f(x) = e^x$, $\Delta f = -f$.

Def

$H^p(M) = \ker (\Delta: \Omega^p(M) \to \Omega^p(M))$

Cor

$\dim H^0(M) = \# \text{ connected components of } M = b^0(M)$.
This fact has an important refinement:

Def (de Rham cohomology) M smooth manifold: \(H^p_{\text{dR}}(M) = \frac{\ker (d: \Omega^p(M) \to \Omega^{p+1}(M))}{\text{im}(d: \Omega^{p+1}(M) \to \Omega^p(M))} \)

\[b^p(M) = \dim_{\mathbb{R}} H^p_{\text{dR}}(M) \]

So this is another way of thinking about the "usual" cohomology of \(M \).

Thm (Hodge) If \(M \) **compact Riemannian,**

Then each class in \(H^p_{\text{dR}}(M) \) contains a unique element of \(H^p(M) \).

Rk Note \(H^p_{\text{dR}}(M) \) **is defined without a metric,** while \(H^p(M) \) **depends on one a priori.**

Pf Sketch If \(\omega \in H^p(M) \) then \(d\omega = 0 \), so have a map \(H^p(M) \to H^p_{\text{dR}}(M) \).

- **Injective:** suppose \(\omega \in H^p(M) \), \(\omega = d\alpha \); then \(\|\omega\|^2 = \langle \omega, d\alpha \rangle = \langle d\ast\omega, \alpha \rangle = 0 \).

- **Surjective:** first note \(\text{Im} d, \text{Im} d\ast, \) and \(H^p \) are all mutually orthogonal.

Suppose we knew \(\Omega^p = d\Omega^{p-1} \oplus d\ast\Omega^{p+1} \oplus H^p \). (see below)

Then, given \(\gamma \) with \(d\gamma = 0 \), \(\gamma = d\alpha + d\ast\beta + \delta \)

\[d\delta = d\ast\beta = 0 \]

but then \(\langle \beta, d\ast\beta \rangle_{L^2} = 0 \) so \(\|d\ast\beta\|^2 = 0 \), i.e. \(d\ast\beta = 0 \).

So, \(\gamma = d\alpha + \delta \).

But then \([\gamma] = [\delta] \) in \(H^p \).
So, what we need is to prove

Lemma \(\Omega^p = d \Omega^{p-1} \otimes d^* \Omega^{p+1} \otimes H^p \).

Pf. Sketch It would be enough to show \(\Omega^p = \Delta \Omega^p \otimes H^p \).

(since \(\text{Im} \Delta \subset \text{Im} d \otimes \text{Im} d^* \))

Note: this would be easy in finite-dimensional setting: just diagonalize \(\Delta \)

to see \(\exists G : \Omega^p \rightarrow \Omega^p \) s.t. for \(\omega \in (H^p)^\perp \), \(\Delta^* G \omega = \omega \).

(So in pth \(\omega \in \text{Im} \Delta \).)

In infinite-dimensional setting, need to develop theory of "ellipticity" to show

that \(G \) exists. (This theory also shows that \(H^p \) is finite-dimensional.)

Very rough idea: on \(\mathbb{S}^n \), write \(\Delta f = \sum \frac{\partial^2 f}{\partial x_i^2} \), then \(\tilde{\Delta} f(k) = \|k\|^2 \hat{f}(k) \) \(k \in \mathbb{Z}^n \)

thus \(\tilde{G} f = \frac{f}{\|k\|^2} \). No problem, as long as \(\hat{f}(0) = 0 \). A version of this idea really works.

It depends crucially on \(\|k\|^2 \neq 0 \) when \(k \neq 0 \). This is ellipticity of \(\Delta \).

\(\textbf{Rk.} \) Warning: \(\alpha, \beta \) harmonic \(\Rightarrow \alpha \wedge \beta \) harmonic!

So \(\wedge \) does not reproduce the "cup product."