Holomorphic line bundles, redux

Let \(\text{Pic}(X) \) be the group of holomorphic line bundles over \(X \), with multi. given by \(\otimes \).

Prop \(\text{Pic}(X) \cong H^1(X, \mathcal{O}^*) \).

Pf Sketch Fix a covering \(U \) of \(X \) by polydiscs. \((\exists ?)\)

1. Use description via transition functions to get a map \(H^1(X, \mathcal{O}^*) \to \text{Pic}(X) \). Well defined by change by Čech coboundary doesn't change the line bundle. Injective by \(\mathcal{O} \).
2. Surjective by every line bundle over polydisc is trivial. (prove using characters via \(\widetilde{\Omega} \).

Use \(0 \to \mathcal{O} \to \mathcal{O} \to \mathcal{O}^* \to 0 \)

to get \(\cdots \to H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}^*) \to \text{Pic}(X) \xrightarrow{\zeta} H^2(X, \mathcal{O}) \to \cdots \).

Thus, loosely speaking, \(\text{Pic}(X) \) has a "continuous" part in \(H^1(X, \mathcal{O}) \cong H^{0,1}(X) \) plus a "discrete part" in \(H^2(X, \mathcal{O}) \). In \(\mathbb{p} \), \(H^{0,1}(X) \) surjects onto sub-group \(\text{Jac}(X) = \text{Pic}^0(X) \) with \(\zeta_1(z) = 0 \). The kernel of \(H^{0,1}(X) \to \text{Jac}(X) \) is \(\text{Im}(H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}^*)) \). That's injective when \(X \) compact.

To see this, go back a few steps to \(H^{0,1}(X, \mathcal{O}) \to H^{0,1}(X, \mathcal{O}^*) \) which is surjective since we can always take the log of a constant function.

Thus we proved

Prop \(X \text{ compact} \Rightarrow \text{Jac}(X) \cong \frac{H^{0,1}(X)}{H^1(X, \mathcal{O})} \).