In diff. top. you have studied the notion of smooth manifold. It's something that looks "locally like $\mathbb{R}^n".

In particular, locally any two smooth manifolds look identical. So e.g. by "local measurements" using only the structure of smooth mfd, can't distinguish \mathbb{R}^2 from S^2.

This doesn't capture many of the features of manifolds we see in the real world.

In particular: suppose you are an ant living on some general manifold $M \subset \mathbb{R}^3$.

Then, you could distinguish M from \mathbb{R}^2. How?

Define

Length of a path: $Y: [0, T] \rightarrow M \subset \mathbb{R}^3$ \[L(Y) = \int_0^T \|\dot{Y}\| dt \quad \text{with} \quad \|V\| = \sqrt{V \cdot V} \]

Define angle between two paths: $\sim \dot{X}, \dot{Y}$ \[\dot{X} \cdot \dot{Y} = \|X\| \|Y\| \cos \Theta \]

Define geodesics to be paths on M which locally minimize distance between two points.

Then, study geodesic triangles on M. \(\triangle \) Let C be the sum of the interior angles.

You will find that $C \neq \pi$ in general.

For example: if $M = S^2$ of radius R, for a triangle of area A, find $C = \pi + \frac{A}{R^2}$

In general we may define $S(p) = \lim_{A \rightarrow 0} (C - \pi)/A$ \(\triangle \) ("scalar curvature").

Then

\[
S(p) = \begin{cases}
\frac{1}{R^2} & \text{if } M = S^2 \text{ of radius } R \\
0 & \text{if } M = \mathbb{R}^2
\end{cases}
\]

So this is a local invariant of $M \subset \mathbb{R}^3$. We defined it using the notion of length and angle inherited from \mathbb{R}^2.

\[\text{Intro} \]
Amazing fact [Gauss-Bonnet]:

\[\chi(M) = \frac{1}{4\pi} \int_M S \, dA \]

\[\chi = 2 \]
\[\chi = 0 \]
\[\chi = -2 \]

so the ants living on \(M \) can determine its global topology just by making local measurements!

Our main aim in this course is to understand this "curvature" and its higher-dimensional analogues. For this we will need to study manifolds equipped with notions of dot-product of tangent vectors, \(g(x): T_xM \otimes T_xM \to \mathbb{R} \) symmetric positive definite.

aka, Riemannian metrics. [NB, this isn't the only possible notion: more generally, one could have just a norm \(F(x): T_xM \to \mathbb{R} \), "Finsler metric"]

In the example we just discussed, \(g \) was inherited: \(TM \subset T\mathbb{R}^3 \)

\(T\mathbb{R}^3 \) has standard metric \(g \),

\[g_M = g_{can} \big|_{T_xM} \]

But in many cases \(M \) will not be a submanifold of anything — define \(g \) in some other way.

Curvature will turn out to be a 4-tensor \(R \in T^4_1(M) \), subject to constraints

so that it has \(\frac{1}{12} n^2(n^2-1) \) independent components, e.g.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n = 1)</th>
<th>(n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 2)</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
| \(n = 4 \) | 20 | ...

The information in this tensor is contained equivalently in sectional curvature

\[K: \text{Gr}_2(TM) \to \mathbb{R} \] (roughly, curvature of "2-plane sections" of \(M \)).

Why study Riemannian metrics?

1) Many natural \(M \) come with natural \(g \).

2) Studying \(g \) sometimes gives info about \(M \): e.g.

a) Gauss-Bonnet + Chern: \(M \) cpt \(\Rightarrow \chi(M) = \frac{1}{(2\pi)^n} \int_M \text{Pf}(R) \) \(M \) \(\rightarrow \) an \(n \)-form built algebraically from \(R \).

b) Cartan-Hadamard: if \(M \) is simply connected and admits a metric \(g \) with all sectional curvatures \(\leq 0 \), then \(M \) is diffeo to \(\mathbb{R}^n \).
c) Hodge: \(g \) determines Laplacian operators \(\Delta_k: \Omega^k(M, \mathbb{R}) \to \Omega^k(M, \mathbb{R}) \), and we have canonically \(\ker \Delta_k \cong H^k(M, \mathbb{R}) \).

d) Riem. metrics are the key tool in Perelman’s pf of Poincaré conjecture:
\(M \) simply connected compact, \(\dim M = 3 \implies M \text{ is homeomorphic to } S^3 \).

3) Riem geometry (or a very slight generalization, semi-Riem geometry, where we have the reg. of positive definiteness) occurs in nature: indeed spacetime is a semi-Riem manifold, and its curvature is responsible for gravity!

Hope to be able to say something about all of these topics.

Prereq: rudiments of differential topology

- smooth manifold
- vector bundle
- tangent, cotangent, tensor bundles
- Lie derivative

[Sec 2 of Lee has a very brief review.]