Def The sectional curvature of \(M \) at \(p \) is \(K(p) : T_pM \times T_pM \to \mathbb{R} \)

\[
K(X,Y) = \frac{\text{Rm}(X,Y,Y,X)}{\|X\|^2\|Y\|^2 - \langle X,Y \rangle^2}
\]

\(K(X,Y) \) only depends on the plane spanned by \(X,Y \).

How to interpret it?

Prop Consider the 2-manifold \(S_{xy} = \{ \exp(tX + sY) : |t| < 3, |s| < 3 \} \subset M \).

\(K(X,Y) \) is the scalar curvature of \(S_{xy} \) at \(p \).

Pf A radial geodesic \(\gamma \) through \(p \) in \(M \) also lies in \(S_{xy} \). Use \(\sim \) for quantities on \(S_{xy} \).

\[
0 = \nabla_y \dot{\gamma} = \tilde{\nabla}_y \dot{\gamma} + II(\dot{\gamma}, \dot{\gamma})
\]

and the two terms on \(\sim \) separately vanish.

Thus \(II = 0 \). Then \(R = \tilde{R} \), so \(K(X,Y) = \frac{\tilde{R}(X,Y,Y,X)}{\|X\|^2\|Y\|^2 - \langle X,Y \rangle^2} \) as desired.

Prop \(K \) determines \(\tilde{R} \).

Pf Suppose \(T(X,Y,Y,X) = 0 \) and \(T \) has the symmetries of \(\text{Rm} \).

Then show \(T = 0 \) [Exercise].

Def \(M \) has constant curvature \(C \) if \(\forall p \in M, \forall XY \in T_pM \), \(K(X,Y) = C \).

Prop \(\mathbb{S}^n \) has const. curv. \(C = 0 \).

\(\mathbb{S}^n_+ \) has const. curv. \(C = 1/R^2 \).

\(\mathbb{H}^n \) has const. curv. \(C = -1/R^2 \).

Pf For \(\mathbb{S}^n_+ \) use \(K = \frac{1}{R} / R \)

For \(\mathbb{H}^n \) make a direct computation at a single point [Exercise], then use isometries.