Last time: maxima and minima of functions

Mean Value Theorem

Fact: Suppose f is a function continuous on $[a,b]$ and differentiable on (a,b).

Then there is some c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Example: Let $f(x) = x^2 - x$

The slope of the tangent line at $(c, f(c))$ is equal to the slope of the secant line connecting $(a, f(a))$ and $(b, f(b))$.

Example: Let $f(x) = x^2 - x$

The slope of the secant line is $\frac{6 - 0}{2 - 0} = 3$

MVT says there must be some c in $(0, 2)$ such that $f'(c) = 3$

Let's check: $f'(x) = 3x^2 - 1$

so $f'(c) = 3$ means $3c^2 - 1 = 3$

$3c^2 = 4$ \hspace{1cm} $c^2 = \frac{4}{3}$ \hspace{1cm} $c = \frac{2}{\sqrt{3}} > 1$

\checkmark It looks fine!
Ex Suppose we drive 200 miles in 5 hours.
Let the position be \(x(t) \).
\[
\begin{align*}
 x(0) &= 0 \\
 x(5) &= 200
\end{align*}
\]
Slope of secant line = \(\frac{200}{5} = 40 \) miles/hour
\((= \text{average speed})\)

\[\text{MVT} \implies \] at some moment, the speedometer read exactly \(40 \) mph.

\[\text{Graphing using derivatives}\]

How do we use \(f'(x) \) to get information about the graph of \(f(x) \)?

Ex Find where the function \(f(x) = 3x^4 - 4x^3 - 12x^2 + 5 \)
is increasing and where it is decreasing.

\[
f'(x) = 12x^3 - 12x^2 - 24x
\]
\[
= 12x(x^2 - x - 2)
\]
\[
= 12x(x + 1)(x - 2)
\]

To see whether \(f'(x) \) is +ve or -ve, look at these 3 pieces:

\[
\begin{array}{cccc}
\text{sign of } f'(x) & - & - & - \\
\text{at } x & -1 & 0 & +
\end{array}
\]

So \(f(x) \) is increasing for \(x \) in \((-1,0) \cup (2,\infty)\).

\(f(x) \) is decreasing for \(x \) in \((-\infty,-1) \cup (0,2)\).

\[
\begin{align*}
 f(-1) &= 0 \\
 f(0) &= 5 \\
 f(2) &= -27
\end{align*}
\]

Let's look closer at the critical points.
\(f'(x) = 0 \) at \(x = -1, 0, 2 \).
At $x = 2$:
\[
\begin{array}{c|c|c}
\text{sign of } f'(x) & - & + \\
\hline
x & \hline
\end{array}
\]
local minimum

At $x = 0$:
\[
\begin{array}{c|c|c}
\text{sign of } f'(x) & + & - \\
\hline
x & \hline
\end{array}
\]
local maximum

At $x = -1$:
\[
\begin{array}{c|c|c}
\text{sign of } f'(x) & - & + \\
\hline
x & \hline
\end{array}
\]
local minimum

First Derivative Test

If c is a critical number for $f(x)$,

1. If $f'(x)$ changes sign from the left at c, then f has local max at c.

2. If $f'(x)$ changes sign from the right to the left at c, then f has local min at c.

3. If $f'(x)$ does not change sign at c, then f has neither max nor min at c.

Example

Find all local max/min of $f(x) = x^{\frac{1}{3}}(x+4)$ on $(0, \infty)$ and $(-\infty, 0)$

Find critical numbers:
\[
f(x) = x^{\frac{1}{3}} + 4x^{\frac{1}{3}}
\]
\[
f'(x) = \frac{1}{3} x^{-\frac{2}{3}} + \frac{4}{3} x^{-\frac{1}{3}}
\]
\[
= \frac{1}{3} \left(x^{-\frac{2}{3}} + 4x^{-\frac{1}{3}} \right)
\]
\[
= \frac{1}{3} x^{-\frac{2}{3}} (x+1)
\]

$f'(x) = 0$ only at $x = -1$.

\[\rightarrow \text{ on } (0, \infty): \text{ no local max/min} \]
\[\rightarrow \text{ on } (-\infty, 0): \text{ local min} \]

So $x = -1$ is a local minimum.
Concavity

Both of these have $f'(x) > 0$ for all $x \in (a, b)$
but they are different:
Say graph of $y = f(x)$ is concave up on (a, b) if it lies above all of its tangent lines in (a, b).
Say graph of $y = f(x)$ is concave down on (a, b) if it lies below all of its tangent lines in (a, b).

Fact
If $f''(x) < 0$ for all $x \in (a, b)$ then the graph of f is concave down on (a, b).
If $f''(x) > 0$ for all $x \in (a, b)$ then the graph of f is concave up on (a, b).

Ex
$f(x) = x^2$
$f'(x) = 2x$
$f''(x) = 2$ so $f''(x) > 0$ for all $x \in (-\infty, \infty)$
so the graph $y = x^2$ is concave up for all $x \in (-\infty, \infty)$.
A point of inflection is a point \((c, f(c))\) where \(f\) is continuous and the graph \(y = f(x)\) changes from concave up to concave down or vice versa.

Ex \(f(x) = x^3 - 3x\)

\[
f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x+1)(x-1)
\]

\[
f''(x) = 6x
\]

So: \(x = 1\) is local minimum
\(x = 0\) is inflection point
\(x = -1\) is local maximum

Second Derivative Test

If \(f\) is continuous at \(c\), \(f'(c) = 0\), and

1. \(f''(c) > 0\), then \(c\) is local minimum
2. \(f''(c) < 0\), then \(c\) is local maximum
3. \(f''(c) = 0\), then the test fails — gives no information

Ex Sketch \(y = x^4 - 4x^3\).

\[
f(x) = x^4 - 4x^3
\]

\[
f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)
\]

\[
f''(x) = 12x^2 - 24x = 12x(x-2)
\]

Ex Sketch \(y = x^4 - 4x^3\).

\[
f(x) = x^4 - 4x^3
\]

\[
f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)
\]

\[
f''(x) = 12x^2 - 24x = 12x(x-2)
\]
critical pts: \(x = 0 \) neither max nor min
\(x = 3 \) local min

inflection pts: \(x = 0, x = 2 \)

\[
\begin{align*}
f(0) &= 0 \\
f(2) &= 16 - 32 = -16 \\
f(3) &= 81 - 108 = -27
\end{align*}
\]