Ex: A cylindrical can without a top is to hold \(V \) cm\(^3\) of liquid. What are the dimensions for the can which minimize the cost of metal?

Want to minimize surface area: \(A = \pi r^2 + 2\pi rh \)

Eliminate \(h \) using our constraint:
\[
V = \pi r^2 h \\
\frac{V}{\pi r^2} = h
\]

Then \(A = \pi r^2 + 2\pi r \left(\frac{V}{\pi r^2} \right) = \pi r^2 + \frac{2V}{r} \)

function of one variable \(r \), domain \((0, \infty) \).

To find absolute minimum: look at \(A'(r) \)

\[
A'(r) = 2\pi r - 2\frac{V}{r^2}
\]

\[
A'(r) = 2\pi r \left(1 - \frac{V}{\pi r^3} \right)
\]

\(A'(r) = 0 \) just if \(1 - \frac{V}{\pi r^3} = 0 \)
\[
\frac{V}{\pi} = r^2 \quad 3\sqrt{\frac{V}{\pi}} = r
\]

Thus the absolute minimum of \(A(r) \) is attained at \(r = \frac{3\sqrt{V}}{\sqrt{\pi}} \).

\[
h = \frac{V}{\pi r^2} = \frac{\sqrt{V}}{\pi \left(\frac{3\sqrt{V}}{\sqrt{\pi}}\right)^2} = \frac{V}{\pi} \left(\frac{\sqrt{V}}{\pi}\right)^{\frac{3}{2}} = \left(\frac{V}{\pi}\right)^{\frac{3}{2}} \sqrt{\frac{V}{\pi}}
\]

Example: Find the largest area possible for a rectangle inscribed in a circle of radius 1.

\[x^2 + y^2 = 1\]

\[A = (2x)(2y) = 4xy\]

First approach: eliminate \(y \)

\[y = \sqrt{1-x^2}\]

Then \(A = 4x\sqrt{1-x^2} \), a function of a single variable, \(A(x) \), with domain \([0, 1]\).

1. Find critical points: \(A'(x) = 4\left(\sqrt{1-x^2} + x \frac{d}{dx} \sqrt{1-x^2}\right)

 \[= 4\left(\sqrt{1-x^2} + x \frac{-2x}{2\sqrt{1-x^2}}\right)\]

 \[= 4\left(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}\right)\]

 \[= 4\left(\frac{1-x^2}{\sqrt{1-x^2}} - \frac{x^2}{\sqrt{1-x^2}}\right)\]

 \[= 4\left(\frac{1-2x^2}{\sqrt{1-x^2}}\right)\]
\[
= 4 \left(\frac{1-x^2}{\sqrt{1-x^2}} - \frac{x^2}{\sqrt{1-x^2}} \right) \\
= \frac{4}{\sqrt{1-x^2}} \left(1-2x^2 \right)
\]

so \(A'(x) = 0 \) just if \(1 - 2x^2 = 0 \) ie \(2x^2 = 1 \)

\[x^2 = \frac{1}{2} \]

\[x = \frac{1}{\sqrt{2}} \] (not \(-\frac{1}{\sqrt{2}} \), this isn't in domain)

So \(x = \frac{1}{\sqrt{2}} \) is the only critical pt.

\[
A\left(\frac{1}{\sqrt{2}} \right) = 4 \left(\frac{1}{\sqrt{2}} \right) \cdot \sqrt{1 - \left(\frac{1}{\sqrt{2}} \right)^2}
\]

\[
= 4 \left(\frac{1}{\sqrt{2}} \right) \cdot \frac{\sqrt{2}}{2} = 2.
\]

Here \(y = \sqrt{1-x^2} = \sqrt{1-\left(\frac{1}{\sqrt{2}} \right)^2} = \frac{1}{\sqrt{2}} = x \)

so this rectangle is a square, with side length \(\frac{1}{\sqrt{2}} \).

(2) Check endpoints: \(A(0) = 4 \cdot 0 \cdot \sqrt{1} = 0 \)

\(A(1) = 4 \cdot 1 \cdot \sqrt{0} = 0 \).

So maximum area is 2, obtained at \(x = \frac{1}{\sqrt{2}} \), \(y = \frac{1}{\sqrt{2}} \).

Alternate way:

\[A = 4xy \]

want to find places where \(\frac{dA}{dx} = 0 \).

Differentiate both equations:

\[
\frac{dA}{dx} = 4y + 4x \frac{dy}{dx}
\]

\[
2x + 2y \frac{dy}{dx} = 0
\]

\[
\frac{dy}{dx} = -\frac{x}{y}
\]
\[\frac{dA}{dx} = 4y - 4 \frac{x^2}{y} \]

So, \(\frac{dA}{dx} = 0 \) means

\[0 = 4y - 4 \frac{x^2}{y} \]

\[4y = 4 \frac{x^2}{y} \]

\[y^2 = x^2 \]

\[y = x \quad (x, y > 0) \]

So the critical pt. is a rectangle which is a square.

\[x = y \]

\[x^2 + y^2 = 1 \]

\[2x^2 = 1 \]

\[x = \frac{1}{\sqrt{2}} \]

\[A = 4 \sin \theta \cos \theta \]

\[\frac{dA}{d\theta} = \cdots \]

or:

\[A = 2 \sin 2\theta \]

\[\frac{dA}{d\theta} = 4 \cos 2\theta \]

So, \(\frac{dA}{d\theta} = 0 \) at \(\cos 2\theta = 0 \)

\[\theta = \frac{\pi}{4} \]

Antiderivatives

\[f(x) = x^2 \implies f'(x) = 2x \]

\[f(x) = \sin(x^3) \implies f'(x) = 3x^2 \cos(x^3) \]
Suppose we want to "go backwards":

\[f' \rightarrow f \]

\[\text{antiderivative} \leftrightarrow \text{derivative} \]

Any function \(f \) has many antiderivatives!

Ex: \(f(x) = x \) has antiderivatives \(F(x) = \frac{1}{2}x^2 \)

\[
F(x) = \frac{1}{2}x^2 + 12 \\
F(x) = \frac{1}{2}x^2 + 7\pi - 8
\]

To get all possible antiderivs for \(f(x) \),
first find one antideriv, then add a arbitrary constant (usually called \(C \)).

Ex: \(f(x) = \cos x \) has general antiderivative \(F(x) = \sin x + C \)

\[
F(x) = \frac{x^{n+1}}{n+1} + C \quad \text{if } n \neq -1
\]

(e.g. \(f(x) = x^4 \) has antideriv. \(F(x) = \frac{x^5}{5} + C \))

\[
\begin{align*}
\text{\(f(x) = 9x^2 + 6x^{3/2} - \frac{2}{x^4} + \cos 2x \)} & \\
\text{has general antideriv.} & \\
F(x) &= 9 \cdot \frac{x^3}{3} + 6 \cdot \frac{x^{5/2}}{(5/2)} - 2 \cdot \frac{x^{-3}}{-3} + \frac{1}{2} \sin 2x + C \\
&= 3x^3 + 12x^{5/2} + \frac{2}{3}x^{-3} + \frac{1}{2} \sin 2x + C \\
\end{align*}
\]

\[
\begin{align*}
\text{\(f(x) = x^{-1} = \frac{1}{x} \) has general antideriv.} & \ln x + C \\
\end{align*}
\]

Sometimes we want a specific antideriv:

Ex What is the function \(F(x) \) such that \(F'(x) = 4x + 7 \) ?

and \(F(1) = 6 \)
Since $F'(x) = 4x + 7$

have $F(x) = 4\left(\frac{x^2}{2}\right) + 7(x) + C$

$= 2x^2 + 7x + C$

and $F(1) = 6$, so $2(1^2) + 7(1) + C = 6$

$9 + C = 6$

$C = -3$

so $F(x) = 2x^2 + 7x - 3$

Why care about antideriv?

One reason:

![Derivative and Antiderivative Diagram]

Ex A train accelerates with constant accel. $a(t) = 4 \text{ ft/s}^2$.

At time $t=0$ it has velocity $v(t=0) = 100 \text{ ft/s}$

and position $s(t=0) = 0 \text{ ft}$.

How far does it go in 20s? $s(t=20) = ?$

$a(t) = 4$

$v(t) = 4t + C$

$v(t=0) = 100$

$C = 100$

so $v(t) = 4t + 100$

$s(t) = 2t^2 + 100t + D$

$s(t=0) = 0$

$D = 0$

so $s(t) = 2t^2 + 100t$
\[s(20) = 2(20^2) + 100 \cdot 20 = 2800 \text{ ft} \]

\[f(x) \quad \text{A critical point of } f \text{ is a point } x \text{ s.t. } x \text{ is in domain of } f \quad \text{and} \quad \text{either} \quad f'(x) = 0 \quad \text{or} \quad f'(x) \text{ DNE} \]