Publications
Books
O. Gonzalez & A. Stuart,
A First Course in Continuum Mechanics,
Cambridge Texts in Applied Mathematics, Cambridge University
Press (2008). ISBN 978-0-521-88680-2 hardback,
ISBN 978-0-521-71424-2 paperback, 176 exercises, 416 pages.
O. Gonzalez & A. Stuart,
A First Course in Continuum Mechanics: Complete
Solutions Manual,
Cambridge University Press (2008), 119 pages.
Articles
Dynamics of an elastic body in a Stokes fluid,
in preparation.
Numerical approximation of boundary stress moments
for Stokes flow, in preparation.
O. Gonzalez, D. Petkeviciute & J.H. Maddocks,
A sequence-dependent rigid-base model of DNA,
Journal of Chemical Physics,
(2012) accepted.
J. Li & O. Gonzalez,
Convergence and conditioning of a Nystrom method for
Stokes flow in exterior three-dimensional domains,
Advances in Computational Mathematics,
(2012) accepted.
O. Gonzalez & J. Li,
A convergence theorem for a class of Nystrom methods for
weakly singular integral equations on surfaces in R^3,
Mathematics of Computation,
(2011) submitted.
O. Gonzalez & J. Li,
An analysis of the regularized stokeslet method,
Applied Mathematics and Computation,
(2011) submitted.
O. Gonzalez & J. Li,
On the hydrodynamic diffusion of rigid
particles of arbitrary shape with application to DNA,
SIAM Journal on Applied Mathematics,
70 (2010) 2627-2651.
J. Walter, O. Gonzalez & J.H. Maddocks,
On the stochastic modeling of rigid body systems with
application to polymer dynamics,
SIAM Multiscale Modeling and Simulation,
8 (2010) 1018-1053.
F. Lankas, O. Gonzalez, L.M. Heffler,
G. Stoll, M. Moakher & J.H. Maddocks,
On the parameterization of rigid base and basepair
models of DNA from molecular dynamics simulations,
Physical Chemistry Chemical Physics,
11 (2009) 10565-10588.
O. Gonzalez,
On stable, complete and singularity-free boundary
integral formulations of exterior Stokes flow,
SIAM Journal on Applied Mathematics
69 (2009) 933-958.
O. Gonzalez & J. Li,
Modeling the sequence-dependent diffusion
coefficients of short DNA sequences,
Journal of Chemical Physics
129 (2008) 165105: 1-12.
O. Gonzalez, A.B.A. Graf & J.H. Maddocks,
Dynamics of a rigid body in a Stokes fluid,
Journal of Fluid Mechanics
519 (2004) 133-160.
O. Gonzalez & R. de la Llave,
Existence of ideal knots,
Journal of Knot Theory and Its Ramifications
12 (2003) 123-133.
J.R. Banavar, O. Gonzalez, J.H. Maddocks & A. Maritan,
Self-interactions of strands and sheets,
Journal of Statistical Physics
110 (2003) 35-50.
O. Gonzalez, J.H. Maddocks & J. Smutny,
Curves, circles and spheres,
Contemporary Mathematics
304 (2002) 195-215.
O. Gonzalez, J.H. Maddocks, F. Schuricht & H. von der Mosel,
Global curvature and self-contact of nonlinearly
elastic curves and rods,
Calculus of Variations and Partial
Differential Equations 14 (2002) 29-68.
O. Gonzalez & J.H. Maddocks,
Extracting parameters for base-pair level models
of DNA from molecular dynamics simulations,
Theoretical Chemistry Accounts
106 (2001) 76-82.
O. Gonzalez, J.H. Maddocks & R.L. Pego,
Multi-multiplier ambient space formulations of constrained
dynamical systems, with an application to elastodynamics,
Archive for Rational Mechanics and Analysis
157 (2001) 285-323.
O. Gonzalez,
Exact energy-momentum conserving algorithms
for general models in nonlinear elasticity,
Computer Methods in Applied Mechanics and Engineering
190 (2000) 1763-1783.
O. Gonzalez & J.H. Maddocks,
Global curvature, thickness and the ideal shapes of knots,
The Proceedings of the National Academy of Sciences,
USA 96 (1999) 4769-4773.
O. Gonzalez,
Mechanical systems subject to holonomic constraints:
differential-algebraic formulations and conservative
integration,
Physica D 132 (1999) 165-174.
O. Gonzalez, D.J. Higham & A.M. Stuart,
Qualitative properties of modified equations,
IMA Journal of Numerical Analysis
19 (1999) 169-190.
A. Stasiak, J. Dubochet, P. Furrer,
O. Gonzalez & J. Maddocks,
DNA: uncooked, al dente, or scotti?,
Science 283 (1999) 1641.
O. Gonzalez & A.M. Stuart,
On the qualitative properties of modified equations,
in Foundations of Computational Mathematics,
edited by F. Cucker & M. Shub, Springer Verlag, Berlin
(1997) 169-179.
O. Gonzalez,
Time integration and discrete hamiltonian systems,
Journal of Nonlinear Science
6 (1996) 449-467.
O. Gonzalez & J.C. Simo,
On the stability of symplectic and energy-momentum
algorithms for nonlinear hamiltonian systems with symmetry,
Computer Methods in Applied Mechanics and Engineering
134 (1996) 197-222.
J.C. Simo & O. Gonzalez,
Recent results on the numerical integration
of infinite-dimensional hamiltonian systems,
in Recent Developments in Finite Element Analysis,
edited by T.J.R. Hughes, E. Onate, and O.C. Zienkiewicz,
International Center for Numerical Methods in Engineering,
Barcelona, Spain (1994) 255-271.
J.C. Simo & O. Gonzalez,
Assessment of energy-momentum and symplectic
schemes for stiff dynamical systems,
American Society of Mechanical Engineers,
proceedings of the ASME Winter Annual Meeting,
New Orleans, Louisiana (1993) 1-12.
Back to home page