\qquad
9/22/2011
TA session: \qquad
Bormashenko

Show your work for all the problems. Good luck!

(1) Let θ be an angle such that $\tan (\theta)=\frac{1}{2}$ and $\cos (\theta)<0$.
(a) [5 pts] Calculate $\sec (\theta)$. (Please put this in the simplest form you can.)

Solution:

Recall that $1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$. Therefore,

$$
\sec ^{2}(\theta)=1+\left(\frac{1}{2}\right)^{2}=1+\frac{1}{4}=\frac{5}{4}
$$

Thus,

$$
\sec (\theta)= \pm \sqrt{\frac{5}{4}}= \pm \frac{\sqrt{5}}{2}
$$

Now we just need to figure out whether $\sec (\theta)$ is $\sqrt{5} / 2$ or $-\sqrt{5} / 2$. Since $\cos (\theta)<0$, and $\sec (\theta)=1 / \cos (\theta)$, it must be true that $\sec (\theta)<0$. Therefore,

$$
\sec (\theta)=-\frac{\sqrt{5}}{2}
$$

(b) [5 pts] Calculate $\sin (\theta)$. (This should also be put in simplest form.)

Solution:

This one can be done using part (a). Since

$$
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}=\sin (\theta) \cdot \sec (\theta)
$$

by moving things to the other side, we get

$$
\sin (\theta)=\frac{\tan (\theta)}{\sec (\theta)}=\frac{1 / 2}{-\sqrt{5} / 2}=-\frac{1}{\sqrt{5}}
$$

(2) (a) [5 pts] Solve for x if

$$
2^{x+3}=4^{3 x-1}
$$

Solution:

Writing everything as a power of 2 ,

$$
2^{x+3}=\left(2^{2}\right)^{3 x-1}=2^{2(3 x-1)}=2^{6 x-2}
$$

using exponent rules and expanding things out.
To have powers of the same base be equal, the exponents have to be the same. Therefore,

$$
\begin{aligned}
x+3 & =6 x-2 \\
\Rightarrow 5 & =5 x \\
\Rightarrow x & =1
\end{aligned}
$$

Thus, the answer is $x=1$.
(b) [5 pts] Write the following quantity as a single logarithm:

$$
\ln (x)+\ln \left(y^{2}-x\right)-2 \ln (z)
$$

Solution:

Simplifying using logarithm rules,

$$
\ln (x)+\ln \left(y^{2}-x\right)-2 \ln (z)=\ln (x)+\ln \left(y^{2}-x\right)-\ln \left(z^{2}\right)=\ln \left(\frac{x\left(y^{2}-x\right)}{z^{2}}\right)
$$

(3) The following is a graph of $f(x)$:

(a) [3 pts] Explain why $f(x)$ is one-to-one.

Solution:

$f(x)$ is one-to-one because it passes the horizontal line test.
(b) [3 pts] Find the value of $f^{-1}(3)$, explaining how you got it.

Solution:

$f^{-1}(3)$ is the x-value corresponds to $y=3$. Therefore,

$$
f^{-1}(3)=2
$$

(c) $[4 \mathrm{pts}]$ Sketch the graph of $f^{-1}(x)$ on these axes:

Solution:

Reflecting along the line $y=x$, we get:

(4) Consider the $f(x)$ in the following graph:

(a) [5 pts] State whether $\lim _{x \rightarrow 1} f(x)$ exists, and calculate it if it does.

Solution:

$\lim _{x \rightarrow 1} f(x)$ exists: as the x-value approaches 1 , the y-value approaches 2 , and therefore

$$
\lim _{x \rightarrow 1} f(x)=2
$$

(b) [5 pts] State whether $\lim _{x \rightarrow 4} f(x)$ exists, and calculate it if it does.

Solution:

$\lim _{x \rightarrow 4} f(x)$ doesn't exist, since the limit from the right is equal to 6 , while the limit from the left is equal to 5 .
(c) [5 pts] State all the points a for which $f(x)$ NOT continuous at a.

Solution:

The function has a jump discontinuity at 4 and removable discontinuities at -3 and 1 . Therefore, the function is not continuous at

$$
x=-3,1,4
$$

(5) Calculate the following limits. You must show all your work to get credit. State if you're using continuity.
(a) [5 pts] $\lim _{x \rightarrow 1} \frac{x^{2}+1}{x+1}$

Solution:

The function $f(x)=\frac{x^{2}+1}{x+1}$ is a rational function, and as such is continuous on its domain. Since $x=1$ doesn't make the denominator $0, x=1$ is in the domain of f. Therefore, $\lim _{x \rightarrow 1} f(x)$ can be evaluated by direct substitution, and is equal to $f(1)$. More concisely,

$$
\lim _{x \rightarrow 1} \frac{x^{2}+1}{x+1}=\frac{1^{2}+1}{1+1}=1
$$

(b) $[5 \mathrm{pts}] \lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x}$

Solution:

Here, direct substitution results in $\frac{0}{0}$, which means that $x=0$ is not in the domain of the function. Therefore, we need to do some simplifying calculations - we use the difference of squares formula after multiplying both top and bottom by the conjugate of the top:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x} \cdot \frac{\sqrt{3 x+4}+2}{\sqrt{3 x+4}+2} \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{3 x+4})^{2}-2^{2}}{x(\sqrt{3 x+4}+2)}=\lim _{x \rightarrow 0} \frac{3 x+4-4}{x(\sqrt{3 x+4}+2)} \\
& =\lim _{x \rightarrow 0} \frac{3 x}{x(\sqrt{3 x+4}+2)} \\
& =\lim _{x \rightarrow 0} \frac{3}{\sqrt{3 x+4}+2}
\end{aligned}
$$

canceling out the x in the top and bottom in the last step. We're now at the point where we can do direct substitution, since the function $f(x)=\frac{3}{\sqrt{3 x+4}+2}$ is continuous on its domain, and $x=0$ is in its domain. Therefore,

$$
\lim _{x \rightarrow 0} \frac{3}{\sqrt{3 x+4}+2}=\lim _{x \rightarrow 0} \frac{3}{\sqrt{3 \cdot 0+4}+2}=\frac{3}{\sqrt{4}+2}=\frac{3}{4}
$$

and therefore,

$$
\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x}=\frac{3}{4}
$$

(6) Let $f(x)=\frac{x^{3}-1}{x^{2}(x-3)}$.
(a) [5 pts] Calculate the horizontal asymptotes of $f(x)$. Show all your work to get credit.

Solution:

To calculate the horizontal asymptotes, calculate the limits as $x \rightarrow \infty$ and the limits as $x \rightarrow-\infty$. To assist in limit-taking, first divide both top and bottom by the highest power in the denominator, which is x^{3} (this is the highest power when expanded out, NOT factored.)

$$
\lim _{x \rightarrow \infty} \frac{x^{3}-1}{x^{2}(x-3)}=\lim _{x \rightarrow \infty} \frac{\left(x^{3}-1\right) / x^{3}}{x^{2}(x-3) / x^{3}}=\lim _{x \rightarrow \infty} \frac{1-1 / x^{3}}{1-3 / x}
$$

As $x \rightarrow \infty$, both $\frac{1}{x^{3}}$ and $\frac{3}{x}$ approach 0 . Therefore, plugging in 0 for them, we get

$$
\lim _{x \rightarrow \infty} \frac{1-1 / x^{3}}{1-3 / x}=\frac{1-0}{1-0}=1
$$

Similarly,

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}-1}{x^{2}(x-3)}=\lim _{x \rightarrow-\infty} \frac{\left(x^{3}-1\right) / x^{3}}{x^{2}(x-3) / x^{3}}=\lim _{x \rightarrow-\infty} \frac{1-1 / x^{3}}{1-3 / x}=1
$$

since $\frac{1}{x^{3}}$ and $\frac{3}{x}$ also go to 0 as $x \rightarrow-\infty$. Therefore, there is the same asymptote at both ∞ and $-\infty$, and it is

$$
y=1
$$

(b) [5 pts] Calculate the vertical asymptotes of $f(x)$.

Solution:

To calculate the vertical asymptotes, set the denominator to 0 , and make sure that at those values the numerator is not 0 (if both are 0 , then the expression $\frac{0}{0}$ is indeterminate instead of being $\pm \infty$.)
Setting the denominator equal to 0 :

$$
\begin{aligned}
& x^{2}(x-3)=0 \Rightarrow x^{2}=0 \text { or } x-3=0 \\
\Rightarrow & x=0 \text { or } x=3
\end{aligned}
$$

Checking, at $x=3$ the numerator is 26 , while at $x=0$ the numerator is -1 . Therefore, they both work, so the vertical asymptotes are

$$
x=0 \text { and } x=3
$$

(c) [10 pts] For each vertical asymptote $x=a$, calculate the one-sided limits $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$. For which of the vertical asymptotes does the two-sided limit $\lim _{x \rightarrow a} f(x)$ exist? $\stackrel{x \rightarrow a}{x \rightarrow a}$ all your work!

Solution:

Doing the calculations like we did in class, with the vertical asymptotes $x=0$ and $x=3$:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x^{3}-1}{x^{2}(x-3)}=\frac{\left(0^{+}\right)^{3}-1}{\left(0^{+}\right)^{2}\left(0^{+}-3\right)}=\frac{-1}{0^{+}(-3)}=\frac{-1}{0^{-}}=\infty \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x^{3}-1}{x^{2}(x-3)}=\frac{\left(0^{-}\right)^{3}-1}{\left(0^{-}\right)^{2}\left(0^{-}-3\right)}=\frac{-1}{0^{+}(-3)}=\frac{-1}{0^{-}}=\infty
\end{aligned}
$$

using the fact that $\left(0^{-}\right)^{2}=\left(0^{+}\right)^{2}=0^{+}$and rules such as the fact that a negative number divided by a negative number is positive. Therefore,

$$
\lim _{x \rightarrow 0} f(x)=\infty
$$

Similarly,

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \frac{x^{3}-1}{x^{2}(x-3)}=\frac{\left(3^{+}\right)^{3}-1}{\left(3^{+}\right)^{2}\left(3^{+}-3\right)}=\frac{26}{9\left(0^{+}\right)}=\frac{26}{0^{+}}=\infty \\
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{x^{3}-1}{x^{2}(x-3)}=\frac{\left(3^{-}\right)^{3}-1}{\left(3^{-}\right)^{2}\left(3^{-}-3\right)}=\frac{26}{9\left(0^{-}\right)}=\frac{26}{0^{-}}=-\infty
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow 3} f(x) \text { DNE (does not exist) }
$$

(7) Let $f(x)$ be a function satisfying $1 \leq f(x) \leq x^{2}+1$ on the interval $[-2,2]$.
(a) [6 pts] Use the Squeeze Theorem to calculate $\lim _{x \rightarrow 0} f(x)$. Show all your work.

Solution:

Here, we have that

$$
\lim _{x \rightarrow 0} 1=1=\lim _{x \rightarrow 0}\left(x^{2}+1\right)
$$

Therefore, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} f(x)=1
$$

(b) [4 pts] Could we use the Squeeze Theorem to calculate $\lim _{x \rightarrow 1} f(x)$? Why or why not?

Solution:

Here, we have that

$$
\lim _{x \rightarrow 1} 1=1 \neq 2=\lim _{x \rightarrow 1}\left(x^{2}+1\right)
$$

Since the Squeeze Theorem can only be used when the two limits are equal, it can't be used here to calculate the limit of $f(x)$ as x approaches 1 .
(8) (a) [6 pts] Use the Intermediate Value Theorem to justify why $x^{2}=\cos (x)$ has a solution on the interval $(0, \pi / 2)$.

Solution:

Rearranging the equation, we're solving for x such that

$$
x^{2}-\cos (x)=0
$$

Let $f(x)=x^{2}-\cos (x)$. This function is continuous everywhere, since it's the difference of the two continuous functions x^{2} and $\cos (x)$, and therefore it's continuous on the closed interval $[0, \pi / 2]$. Now, we have that

$$
\begin{aligned}
f(0) & =0^{2}-\cos (0)=-1<0 \\
f(\pi / 2) & =(\pi / 2)^{2}-\cos (\pi / 2)=\pi^{2} / 4>0
\end{aligned}
$$

Therefore, 0 is between $f(0)$ and $f(\pi / 2)$, so the Intermediate Value Theorem states that there exists a c on the interval $(0, \pi / 2)$ such that $f(c)=0$. Thus, c is a solution to $x^{2}=\cos (x)$ on the interval $(0, \pi / 2)$, so a solution has been shown to exist.
(b) [4 pts] On the right is the (hopefully familiar) graph of $f(x)=1 / x$. As you can see, $f(-1)=-1$ and $f(1)=1$. However, there does not exist a c on the interval $(-1,1)$ such that $f(c)=0$. (Put another way, the graph doesn't cross the x-axis.) Explain why this does not contradict the Intermediate Value Theorem.

Solution:

The function $f(x)=1 / x$ is not continuous at 0 , so it is not continuous on the interval $[-1,1]$. Therefore, the Intermediate Value Theorem doesn't apply, and there's no contradiction.

(9) BONUS: [10 pts] Sketch two functions $f(x)$ and $g(x)$ such that neither of the limits $\lim _{x \rightarrow 1} f(x)$ and $\lim _{x \rightarrow 1} g(x)$ exist, but $\lim _{x \rightarrow 1}(f(x)+g(x))$ does exist. Explain why that is the case for the functions you chose.

Solution:

For the functions $f(x)$ and $g(x)$ in the picture above (where $f(x)$ is represented by the solid line, and $g(x)$ by the dotted line), the limit at 1 clearly doesn't exist. However, the limits from the left and right do exist, and therefore we can do the following calculation:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}}(f(x)+g(x)) & =\lim _{x \rightarrow 1^{-}} f(x)+\lim _{x \rightarrow 1^{-}} g(x)=2+1=3 \\
\lim _{x \rightarrow 1^{+}}(f(x)+g(x)) & =\lim _{x \rightarrow 1^{+}} f(x)+\lim _{x \rightarrow 1^{+}} g(x)=3+0=3
\end{aligned}
$$

Thus, since $\lim _{x \rightarrow 1^{-}}(f(x)+g(x))=\lim _{x \rightarrow 1^{+}}(f(x)+g(x))=3$, we see that

$$
\lim _{x \rightarrow 1}(f(x)+g(x))=3
$$

so the limit of $f(x)+g(x)$ as x approaches 1 does exist, just as we wanted.

