\qquad
12/03/2011
Bormashenko
TA session: \qquad

Show your work for all the problems. Good luck!

(1) Let $f(x)=\frac{e^{x}}{e^{x}-1}$.
(a) [5 pts] State the domain and range of $f(x)$.

Solution:

Since e^{x} is defined for all x, we see that $f(x)$ is defined as long as the denominator is not 0 . The denominator is 0 if

$$
\begin{aligned}
e^{x}-1=0 & \Rightarrow e^{x}=1 \\
& \Rightarrow x=\ln (1)=0
\end{aligned}
$$

Thus, the domain is all $x \neq 0$, or in other words, $(-\infty, 0) \cup(0, \infty)$.
To figure out the range, let's write

$$
f(x)=\frac{e^{x}}{e^{x}-1}=1+\frac{1}{e^{x}-1}
$$

Since e^{x} can take on any positive value, $e^{x}-1$ can take on any value greater than -1 . Therefore, $\frac{1}{e^{x}-1}$ takes on values in $(0, \infty)$ and in $(-\infty,-1)$. Since we add 1 to this quantity, the range of f is $(-\infty, 0) \cup(1, \infty)$
(b) $[5 \mathrm{pts}]$ Calculate a formula for $f^{-1}(x)$.

Solution:

We take the equation $y=f(x)$, solve for x, then swap x and y to find $f^{-1}(x)$.

$$
\begin{aligned}
y=\frac{e^{x}}{e^{x}-1} & \Rightarrow y\left(e^{x}-1\right)=e^{x} \\
& \Rightarrow y e^{x}-y=e^{x} \\
& \Rightarrow e^{x}(y-1)=y \\
& \Rightarrow e^{x}=\frac{y}{y-1}
\end{aligned}
$$

Taking \ln of both sides, we get that $x=\ln \left(\frac{y}{y-1}\right)$. Finally, swapping x and y we see that

$$
f^{-1}(x)=y=\ln \left(\frac{x}{x-1}\right)
$$

(c) [5 pts] Find the domain and range of f^{-1}.

Solution:

We know that the domain of f^{-1} is the range of f, and the range of f^{-1} is the domain of f. Thus, the domain of f^{-1} is $(-\infty, 0) \cup(1, \infty)$ and the range of f^{-1} is $(-\infty, 0) \cup(0, \infty)$.
(2) Calculate the following limits, using whatever tools are appropriate. State which results you're using for each question.
(a) [5 pts] $\lim _{x \rightarrow 1} \frac{x^{2}+1}{x-2}$

Solution:

Since $\frac{x^{2}+1}{x-2}$ is a rational function (a quotient of polynomials), it's continuous everywhere on its domain. Since 1 is in its domain, we can calculate the limit by plugging in. Therefore,

$$
\lim _{x \rightarrow 1} \frac{x^{2}+1}{x-2}=\frac{1^{2}+1}{1-2}=-2
$$

(b) [5 pts] $\lim _{x \rightarrow 0} \frac{\frac{1}{x}-\frac{1}{x-1}}{x^{-1}}$

Solution:

Here, we can't just plug in because we get expressions like $1 / 0$. Therefore, doing a bit of algebra,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\frac{1}{x}-\frac{1}{x-1}}{x^{-1}} & =\lim _{x \rightarrow 0} \frac{\frac{x-1}{x(x-1)}-\frac{x}{x(x-1)}}{x^{-1}} \\
& =\lim _{x \rightarrow 0} \frac{-\frac{1}{x(x-1)}}{x^{-1}}=-\lim _{x \rightarrow 0} \frac{1}{x^{-1} x(x-1)} \\
& =-\lim _{x \rightarrow 0} \frac{1}{x-1}
\end{aligned}
$$

Since $\frac{1}{x-1}$ is continuous at 0 , this limit can be evaluated by plugging. Therefore,

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{x}-\frac{1}{x-1}}{x^{-1}}=-\frac{1}{0-1}=1
$$

(c) [5 pts] $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{e^{x}-x-1}$

Solution:

This is a limit of the form $\frac{0}{0}$. Therefore, using L'Hospital's rule,

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{e^{x}-x-1}=\lim _{x \rightarrow 0} \frac{(\cos (x)-1)^{\prime}}{\left(e^{x}-x-1\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{-\sin (x)}{e^{x}-1}
$$

This is still of the form $\frac{0}{0}$, so we can use L'Hospital's again:

$$
\lim _{x \rightarrow 0} \frac{-\sin (x)}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{-\cos (x)}{e^{x}}
$$

Finally, $\frac{-\cos (x)}{e^{x}}$ is continuous at 0 , so we can plug in. Therefore,

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{e^{x}-x-1}=\frac{-\cos (0)}{e^{0}}=-1
$$

(d) [5 pts] $\lim _{x \rightarrow 2} f(x)$, where $2 \leq f(x) \leq x^{2}-2$ for all $x \in[1,4]$.

Solution:

This uses the Squeeze Theorem. Here, we have that

$$
\lim _{x \rightarrow 2} 2=2=\lim _{x \rightarrow 2}\left(x^{2}-2\right)
$$

Therefore, since $f(x)$ is between 2 and $x^{2}-2$ on $[1,4]$, we also have that

$$
\lim _{x \rightarrow 2} f(x)=2
$$

(e) $[5 \mathrm{pts}] \lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{3 x+1}$

Solution:

This is an interderminate of the form 1^{∞}. Let $L=\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{3 x+1}$. Then, taking \ln of both sides, we have that

$$
\begin{aligned}
\ln (L) & =\ln \left(\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{3 x+1}\right)=\lim _{x \rightarrow \infty} \ln \left(\left(1-\frac{1}{x}\right)^{3 x+1}\right) \\
& =\lim _{x \rightarrow \infty}(3 x+1) \ln \left(1-\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1-\frac{1}{x}\right)}{1 /(3 x+1)}
\end{aligned}
$$

This is now an indeterminate of the form $\frac{0}{0}$. Therefore, using L'Hospital's, and then doing some algebra:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln \left(1-\frac{1}{x}\right)}{1 /(3 x+1)} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{1-1 / x} \cdot \frac{1}{x^{2}}}{-3 /(3 x+1)^{2}}=\lim _{x \rightarrow \infty} \frac{(3 x+1)^{2}}{-3(1-1 / x) x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{9 x^{2}+6 x+1}{-3 x^{2}+3 x}
\end{aligned}
$$

Now, if you remember the rule for taking limits like these, you can read it off from the highest coefficients and see that it's going to be $\frac{9}{-3}=-3$. Doing the actual calculation we would need to write down by dividing top and bottom by x^{2},

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{9 x^{2}+6 x+1}{-3 x^{2}+3 x} & =\lim _{x \rightarrow \infty} \frac{\left(9 x^{2}+6 x+1\right) / x^{2}}{\left(-3 x^{2}+3 x\right) / x^{2}}=\lim _{x \rightarrow \infty} \frac{9+6 / x+1 / x^{2}}{-3+3 / x} \\
& =\frac{\lim _{x \rightarrow \infty}\left(9+6 / x+1 / x^{2}\right)}{\lim _{x \rightarrow \infty}(-3+3 / x)}=\frac{9}{-3}=-3
\end{aligned}
$$

Since this was a calculation after taking the \ln, we now know that $\ln (L)=-3$. Therefore,

$$
\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{3 x+1}=L=e^{\ln (L)}=e^{-3}
$$

(f) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$

Solution:

Using the standard difference of squares trick,

$$
\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2}=\lim _{x \rightarrow 4} \frac{(x-4)(\sqrt{x}+2)}{x-4}=\lim _{x \rightarrow 4} \sqrt{x}+2
$$

Since $\sqrt{x}+2$ is positive, we can just plug in to get the answer. Thus, $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\sqrt{4}+2=4$
(3) Let the function $f(x)$ be defined piecewise as follows:

$$
f(x)= \begin{cases}-1 & x \leq-1 \\ x^{2} & -1<x<1 \\ x & x \geq 1\end{cases}
$$

(a) [5 pts] Sketch a graph of this function.

Solution:

(b) [10 pts] State the intervals on which $f(x)$ is continuous. Do a limit calculation checking for continuity at any points where this is necessary.

Solution:

It should be clear from the above picture that $f(x)$ is continuous everywhere except at -1 : that is, $f(x)$ is continuous on $(-\infty,-1) \cup(-1, \infty)$. However, we're asked to check this not only using the picture, but the limit definition. Recall that $f(x)$ is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Since the functions $y=-1, y=x^{2}$, and $y=x$ are continuous everywhere, and these make up our three pieces, we know that $f(x)$ must be continuous eveywhere except the places where the functions 'connect.' Therefore, we only need to check whether $f(x)$ is continuous at -1 and 1 . Now, note that

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}-1=-1
$$

using the fact that a little to the left of $-1, f(x)=-1$. Similarly,

$$
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} x^{2}=(-1)^{2}=1
$$

Therefore,

$$
\lim _{x \rightarrow-1^{-}} f(x) \neq \lim _{x \rightarrow-1^{+}} f(x)
$$

so $\lim _{x \rightarrow-1} f(x)$ doesn't exist. Hence, $f(x)$ isn't continuous at -1 .
Similarly, checking at 1:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} x^{2}=1 \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} x=1
\end{aligned}
$$

Thus, we see that since the left and right limits match, the limit of $f(x)$ at 1 exists, and is equal to 1 . Furthermore, note that $f(1)=1$. Thus, we see that

$$
\lim _{x \rightarrow 1} f(x)=1=f(1)
$$

which means that $f(x)$ is continuous at 1 .
(4) Calculate the following derivatives using the limit definition of the derivative. You may NOT use L'Hospital's rule for these.
(a) [5 pts] $f^{\prime}(x)$, where $f(x)=x^{2}-2$.

Solution:

By definition,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}-2\right)-\left(x^{2}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-2-x^{2}+2}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h)=2 x
\end{aligned}
$$

(b) $[5 \mathrm{pts}] f^{\prime}(1)$, where $f(x)=\frac{1}{\sqrt{x}}$.

Solution:

By definition,

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{1+h}}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1-\sqrt{1+h}}{\sqrt{1+h}}}{h}=\lim _{h \rightarrow 0} \frac{1-\sqrt{1+h}}{h \sqrt{1+h}}
\end{aligned}
$$

Using our standard difference of squares trick,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{1-\sqrt{1+h}}{h \sqrt{1+h}} & =\lim _{h \rightarrow 0} \frac{1-\sqrt{1+h}}{h \sqrt{1+h}} \cdot \frac{1+\sqrt{1+h}}{1+\sqrt{1+h}} \\
& =\lim _{h \rightarrow 0} \frac{1-(1+h)}{h \sqrt{1+h}(1+\sqrt{1+h})} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h \sqrt{1+h}(1+\sqrt{1+h})}=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{1+h}(1+\sqrt{1+h})}
\end{aligned}
$$

At this point, we can just plug in, getting

$$
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{1}(1+\sqrt{1})}=-\frac{1}{2}
$$

(5) Calculate the following derivatives using whichever tools you wish. State the results you're using. You do NOT need to simplify your answers!
(a) [5 pts] Find $f^{\prime}(x)$, if $f(x)=\ln (x) e^{x}+\sin (x)$.

Solution:

Using the product rule and sum rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(\ln (x) e^{x}+\sin (x)\right)^{\prime}=\left(\ln (x) e^{x}\right)^{\prime}+(\sin (x))^{\prime} \\
& =(\ln (x))^{\prime} e^{x}+\ln (x)\left(e^{x}\right)^{\prime}+\cos (x) \\
& =\frac{1}{x} e^{x}+\ln (x) e^{x}+\cos (x)
\end{aligned}
$$

(b) [5 pts] Find $f^{\prime}(x)$, if $f(x)=\frac{\tan \left(e^{x}\right)}{x^{2}+1}$

Solution:

Using the quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(\tan \left(e^{x}\right)\right)^{\prime}\left(x^{2}+1\right)-\tan \left(e^{x}\right)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(\tan \left(e^{x}\right)\right)^{\prime}\left(x^{2}+1\right)-2 x \tan \left(e^{x}\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Now, using the chain rule,

$$
\tan \left(e^{x}\right)^{\prime}=\sec ^{2}\left(e^{x}\right) \cdot\left(e^{x}\right)^{\prime}=\sec ^{2}\left(e^{x}\right) e^{x}
$$

Plugging in, this gets

$$
f^{\prime}(x)=\frac{\sec ^{2}\left(e^{x}\right) e^{x}\left(x^{2}+1\right)-2 x \tan \left(e^{x}\right)}{\left(x^{2}+1\right)^{2}}
$$

(c) [5 pts] Find $f^{\prime}(x)$, if $f(x)=x^{2} \cos (x)^{\sin (x)+1}$

Solution:

This requires logarithmic differentiation. If $y=x^{2} \cos (x)^{\sin (x)+1}$, then

$$
\begin{aligned}
\ln (y) & =\ln \left(x^{2} \cos (x)^{\sin (x)+1}\right)=\ln \left(x^{2}\right)+\ln \left(\cos (x)^{\sin (x)+1}\right) \\
& =2 \ln (x)+(\sin (x)+1) \ln (\cos (x))
\end{aligned}
$$

Therefore, taking derivatives of both sides (using implicit differentiation, the product rule, and then the chain rule),

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{2}{x}+(\sin (x)+1) \ln (\cos (x))^{\prime}+(\sin (x)+1)^{\prime} \ln (\cos (x)) \\
& =\frac{2}{x}+(\sin (x)+1) \frac{1}{\cos (x)}(-\sin (x))+\cos (x) \ln (\cos (x)) \\
& =\frac{2}{x}-\frac{\sin (x)^{2}+\sin (x)}{\cos (x)}+\cos (x) \ln (\cos (x))
\end{aligned}
$$

Thus, solving for y^{\prime}, and plugging in y :

$$
\begin{aligned}
f^{\prime}(x)=y^{\prime} & =y\left(\frac{2}{x}-\frac{\sin (x)^{2}+\sin (x)}{\cos (x)}+\cos (x) \ln (\cos (x))\right) \\
& =x^{2} \cos (x)^{\sin (x)+1}\left(\frac{2}{x}-\frac{\sin (x)^{2}+\sin (x)}{\cos (x)}+\cos (x) \ln (\cos (x))\right)
\end{aligned}
$$

(d) [5 pts] Find y^{\prime} in terms of x and y, if $x y+e^{y}=\arctan (x)$.

Solution:

Using implicit differentiation to take derivatives of both sides,

$$
\begin{aligned}
\left(x y+e^{y}\right)^{\prime} & =(\arctan (x))^{\prime} \\
\Rightarrow x y^{\prime}+y+y^{\prime} e^{y} & =\frac{1}{1+x^{2}}
\end{aligned}
$$

Now, solving for y^{\prime}, we get

$$
\begin{aligned}
\Rightarrow y^{\prime}\left(x+e^{y}\right) & =\frac{1}{1+x^{2}}-y \\
\Rightarrow y^{\prime} & =\frac{\frac{1}{1+x^{2}}-y}{x+e^{y}}
\end{aligned}
$$

(e) [5 pts] Find $g^{\prime}(x)$, if $g(x)=\arccos (x) \cdot \int_{1}^{x} e^{t^{2}} \sin (\cos (t)) d t$

Solution:

Using the product rule,

$$
\begin{aligned}
g^{\prime}(x) & =(\arccos (x))^{\prime} \int_{1}^{x} e^{t^{2}} \sin (\cos (t)) d t+\arccos (x)\left(\int_{1}^{x} e^{t^{2}} \sin (\cos (t)) d t\right)^{\prime} \\
& =-\frac{1}{\sqrt{1-x^{2}}} \int_{1}^{x} e^{t^{2}} \sin (\cos (t)) d t+\arccos (x)\left(\int_{1}^{x} e^{t^{2}} \sin (\cos (t)) d t\right)^{\prime}
\end{aligned}
$$

Furthermore, by the Fundamental Theorem of Calculus,

$$
\left(\int_{1}^{x} e^{t^{2}} \sin (\cos (t)) d t\right)^{\prime}=e^{x^{2}} \sin (\cos (x))
$$

Therefore,

$$
g^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}} \int_{1}^{x} e^{t^{2}} \sin (\cos (t)) d t+\arccos (x) e^{x^{2}} \sin (\cos (x))
$$

(f) [5 pts] Find $g^{\prime}(x)$, if $g(x)=\int_{1}^{x^{2}+1}\left(u^{2}+u\right) d u$

Solution:

Using the chain rule,

$$
\begin{aligned}
g^{\prime}(x) & =\left(\int_{1}^{x^{2}+1}\left(u^{2}+u\right) d u\right)^{\prime}=\left(\left(x^{2}+1\right)^{2}+\left(x^{2}+1\right)\right) \cdot\left(x^{2}+1\right)^{\prime} \\
& =2 x\left(\left(x^{2}+1\right)^{2}+x^{2}+1\right)
\end{aligned}
$$

(6) Calculate the equations of the following tangent lines:
(a) The tangent line to $y=\frac{e^{x-1}}{\ln (x)+1}$ at $x=1$.

Solution:

To find the slope of the tangent line, use the derivative. Using the quotient rule,

$$
y^{\prime}=\frac{e^{x-1}(\ln (x)+1)-e^{x-1} \frac{1}{x}}{(\ln (x)+1)^{2}}
$$

Therefore, at $x=1$ the slope is

$$
y^{\prime}(1)=\frac{e^{0}(\ln (1)+1)-e^{0} \frac{1}{1}}{(\ln (1)+1)^{2}}=\frac{1-1}{1^{2}}=0
$$

To find the point on the graph that the tangent line goes through, we find the point with x-coordinate 1 . Since

$$
y(1)=\frac{e^{0}}{\ln (1)+1}=\frac{1}{1}=1
$$

the point on the line is $(1,1)$.
Using the point-slope formula, we see that the equation is

$$
y-1=0 \cdot(x-1)=0
$$

so the equation is $y-1=0$, or $y=1$.
(b) The tangent line to $y=f(x) g(x)$ at $x=0$, given that $f(0)=2, g(0)=3, f^{\prime}(0)=-1$, and $g^{\prime}(0)=4$.

Solution:

Like above, we need the slope of the tangent and the point on the line. Using the product rule,

$$
y^{\prime}=(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

so we have that

$$
y^{\prime}(0)=f^{\prime}(0) g(0)+f(0) g^{\prime}(0)=(-1) \cdot 3+2 \cdot 4=5
$$

To find the point on the line, find the y-coordinate at $x=0$:

$$
y(0)=f(0) g(0)=2 \cdot 3=6
$$

Therefore, the point on the line is $(0,6)$. Thus, using the point-slope formula, we get

$$
\begin{aligned}
(y-6) & =5(x-0) \\
\Rightarrow y-6 & =5 x
\end{aligned}
$$

Therefore, the equation of the line is $y=5 x+6$.
(7) (a) [5 pts] Find the linearization of $f(x)=x^{1 / 3}$ at $x=27$.

Solution:

The formula for the linearization of $f(x)$ at $x=a$ is

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Here, $f(x)=x^{1 / 3}$ and $a=27$. Therefore, $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Calculating,

$$
\begin{aligned}
f(a) & =27^{1 / 3}=\sqrt[3]{27}=3 \\
f^{\prime}(a) & =\frac{1}{3}(27)^{-2 / 3}=\frac{1}{3}\left(27^{1 / 3}\right)^{-2}=\frac{1}{3}(\sqrt[3]{27})^{-2} \\
& =\frac{1}{3} 3^{-2}=\frac{1}{3} \cdot \frac{1}{3^{2}}=\frac{1}{27}
\end{aligned}
$$

Plugging these values in, we get that

$$
L(x)=3+\frac{1}{27}(x-27)
$$

(b) [5 pts] Use the result from part (a) to estimate $\sqrt[3]{29}$.

Solution:

Since 29 is near $27, f(29) \approx L(29)$. Therefore,

$$
\sqrt[3]{29}=f(29) \approx L(29)=3+\frac{1}{27}(29-27)=3+\frac{2}{27}=\frac{83}{27}
$$

(c) [5 pts] Could you use the result from (a) to estimate $\sqrt[3]{65}$, or would you need to do something different? (If you need to do something different, please eplain what it is.)

Solution:

Since 65 is not near $27, L(65)$ isn't going to be particularly close to $\sqrt[3]{65}$. (If you calculate both values on your calculator, you'll see that it's true.) Instead, what we would need here is a linearization at point that's closer to 65 . Since $\sqrt[3]{64}=4$, the best thing to do would be to find the linearization at 64 and use that to estimate $\sqrt[3]{65}$.
(8) [10 pts] A sphere is expanding, with its volume growing at a rate of $4 \mathrm{ft}^{3} / \mathrm{sec}$. How quickly is its surface area changing, when the volume of the sphere is $36 \pi \mathrm{ft}^{3}$?

You may use the following formulas for the surface area and volume of a sphere with radius r :

$$
A=4 \pi r^{2}, V=\frac{4}{3} \pi r^{3}
$$

Solution:

This is clearly a related rates problem. This means we're going to go through our standard algorithm. We don't really need a picture here - our picture will just be a sphere with radius r, volume V, and surface area A.
(a) Given: $V^{\prime}=4, V=36 \pi$.

Find: A^{\prime}
(b) Relationships: As given above,

$$
\begin{aligned}
A & =4 \pi r^{2} \\
V & =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

(c) Differentiate: Differentiating both sides of the relationships using chain rule,

$$
\begin{aligned}
A^{\prime} & =8 \pi r r^{\prime} \\
V^{\prime} & =4 \pi r^{2} r^{\prime}
\end{aligned}
$$

(d) Solve for A^{\prime}, plug in instantaneous info: Here, we already have that $A^{\prime}=8 \pi r r^{\prime}$. Thus, to calculate A^{\prime} we need r and r^{\prime}. This is where we use the instantaneous info. Since $V=\frac{4}{3} \pi r^{3}$, and at the instant $V=36 \pi$, we get that

$$
\begin{aligned}
36 \pi & =\frac{4}{3} \pi r^{3} \\
\Rightarrow r^{3} & =36 \pi \cdot \frac{3}{4 \pi} \\
\Rightarrow r^{3} & =25
\end{aligned}
$$

Taking cube roots, we get that $r=3$. Now, since $V^{\prime}=4$, we can plug in $r=3$ into the expression for V^{\prime} to solve for r^{\prime}. Thus,

$$
\begin{aligned}
4 & =4 \pi r^{2} r^{\prime}=36 \pi r^{\prime} \\
\Rightarrow r^{\prime} & =\frac{4}{36 \pi}=\frac{1}{9 \pi}
\end{aligned}
$$

Since we now know that at the instant, $r=3$ and $r^{\prime}=\frac{1}{9 \pi}$, we can plug that into the expression for A^{\prime}. Therefore,

$$
A^{\prime}=8 \pi r r^{\prime}=8 \pi \cdot 3 \cdot \frac{1}{9 \pi}=\frac{24 \pi}{9 \pi}=\frac{8}{3}
$$

Thus, the surface area is changing at a rate of $8 / 3 \mathrm{ft}^{2} / \mathrm{sec}$.
(9) [10 pts] Let $f(x)=x^{3}+6 x^{2}+9 x+7$. Find the absolute minimum value and absolute maximum value of f on the interval $[-4,2]$.

Solution:

Since we're finding absolute extrema on a closed interval, we can use the closed interval test: we find all the critical points and plug in the critical points which lie in the interval as well as the endpoints into f. The smallest number we get will be the absolute minimum, and the largest number will be the absolute maximum.

A critical point is a point where f^{\prime} is either 0 or doesn't exist. Here, we have that

$$
f^{\prime}(x)=3 x^{2}+12 x+9
$$

Clearly, $f^{\prime}(x)$ exists everywhere, so the only critical points will occur where $f^{\prime}(x)=0$. Solving,

$$
\begin{aligned}
0 & =f^{\prime}(x)=3 x^{2}+12 x+9=3\left(x^{2}+4 x+3\right) \\
\Rightarrow & =x^{2}+4 x+3=(x+1)(x+3)
\end{aligned}
$$

Thus, the only critical points are $x=-1$ and $x=-3$ which are both in the interval $[-4,2]$. Thus, we need to plug in these critical points as well as the endpoints -4 and 2 into f. We get

$$
\begin{aligned}
f(-4) & =(-4)^{3}+6(-4)^{2}+9(-4)+7=3 \\
f(-3) & =(-3)^{3}+6(-3)^{2}+9(-3)+7=7 \\
f(-1) & =(-1)^{3}+6(-1)^{2}+9(-1)+7=3 \\
f(2) & =(2)^{3}+6(2)^{2}+9(2)+7=57
\end{aligned}
$$

Therefore, the absolute minimum is 3 , attained at -4 and -1 , and the absolute maximum is 57 , attained at 2.
(10) Let $f(x)=\frac{e^{x}}{x-1}$. Answer the following questions about $f(x)$.
(a) [5 pts] Find all the critical points of $f(x)$.

Solution:

A critical point is a value of x such that $f^{\prime}(x)=0$ or doesn't exist. Using the quotient rule,

$$
f^{\prime}(x)=\frac{e^{x}(x-1)-e^{x}}{(x-1)^{2}}=\frac{e^{x}(x-2)}{(x-1)^{2}}
$$

To find where $f^{\prime}(x)=0$, set the numerator to 0 . Then,

$$
e^{x}(x-2)=0 \Rightarrow e^{x}=0 \text { or } x-2=0
$$

Since $e^{x}=0$ is impossible, we see that $f^{\prime}(x)=0$ only if $x=2$. To find where $f^{\prime}(x)$ doesn't exist, set the denominator to 0 . Thus, we get

$$
(x-1)^{2}=0 \Rightarrow x=1
$$

However, $x=1$ is not in the domain of f, and therefore is not a critial point. Thus, the only critical point is $x=2$ (although we will also need to use $x=1$ for the next parts of the question.)
(b) [5 pts] Find the intervals on which $f(x)$ is increasing and decreasing.

Solution:

We make a number line chart for f^{\prime} :

To fill in the signs of f^{\prime}, plug in points in each interval and check the sign. We'll plug in 0 for the interval $(-\infty, 1), 1.5$ for $(1,2)$, and 3 for $(2, \infty)$. Calculating,

$$
\begin{aligned}
f^{\prime}(0) & =\frac{e^{0}(0-2)}{(0-1)^{2}}=-2<0 \\
f^{\prime}(1.5) & =\frac{e^{1.5}(1.5-2)}{(1.5-1)^{2}}<0 \\
f^{\prime}(3) & =\frac{e^{3}(3-2)}{(3-1)^{2}}>0
\end{aligned}
$$

Thus, filling in the pluses and minuses on the number line, we get

Therefore, $f(x)$ is decreasing on $(-\infty, 1) \cup(1,2)$ and increasing on $(2, \infty)$.
(c) [5 pts] Find the intervals on which $f(x)$ is concave up and concave down.

Solution:

Here, we need to figure out where $f^{\prime \prime}(x)$ is positive and negative. Calculating,

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(\frac{e^{x}(x-2)}{(x-1)^{2}}\right)^{\prime}=\frac{\left(e^{x}(x-2)\right)^{\prime}(x-1)^{2}-e^{x}(x-2) 2(x-1)}{(x-1)^{4}} \\
& =\frac{\left(e^{x}(x-2)\right)^{\prime}(x-1)-2 e^{x}(x-2)}{(x-1)^{3}}
\end{aligned}
$$

Continuing to simplify,

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(e^{x}(x-2)+e^{x}\right)(x-1)-2 e^{x}(x-2)}{(x-1)^{3}} \\
& =\frac{e^{x}(x-1)(x-1)-2 e^{x}(x-2)}{(x-1)^{3}} \\
& =\frac{e^{x}\left(x^{2}-2 x+1-2 x+4\right)}{(x-1)^{3}} \\
& =\frac{e^{x}\left(x^{2}-4 x+5\right)}{(x-1)^{3}}
\end{aligned}
$$

We need to find where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ doesn't exist. To get $f^{\prime \prime}(x)=0$, set the numerator to 0 .

$$
e^{x}\left(x^{2}-4 x+5\right)=0 \Rightarrow e^{x}=0 \text { or } x^{2}-4 x+5=0
$$

Since $e^{x}=0$ is impossible, and $x^{2}-4 x+5=(x-2)^{2}+1$ is always positive, we see there are no solutions to $f^{\prime \prime}(x)=0$.
To find where $f^{\prime \prime}(x)$ doesn't exist, set the denominator to 0 . Then,

$$
(x-1)^{3}=0 \Rightarrow x=1
$$

Thus, the only point on our sign chart is $x=1$. Starting the sign chart:

We plug in 0 to test the interval $(-\infty, 1)$ and plug in 2 to test the interval $(1, \infty)$:

$$
\begin{aligned}
& f^{\prime \prime}(0)=\frac{e^{0}\left(0^{2}-4 \cdot 0+5\right)}{(0-1)^{3}}=\frac{5}{-1}<0 \\
& f^{\prime \prime}(2)=\frac{e^{2}\left(2^{2}-4 \cdot 2+5\right)}{(2-1)^{3}}=\frac{e^{2}}{1}>0
\end{aligned}
$$

Thus, the sign chart is

Finally, the conclusion is that $f(x)$ is concave down on $(-\infty, 1)$ and concave up on $(1, \infty)$.
(d) [5 pts] Find the horizontal asymptotes of $f(x)$. For each asymptote, state whether it occurs at ∞ or $-\infty$.

Solution:

To find horizontal asymptotes, we take the limit as x approaches ∞ and $-\infty$ of $f(x)$. Taking the limit as $x \rightarrow \infty$ first, we see that $\lim _{x \rightarrow \infty} \frac{e^{x}}{x-1}$ is of the form $\frac{\infty}{\infty}$, so we can use L'Hospital's. Hence,

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x-1}=\lim _{x \rightarrow \infty} \frac{e^{x}}{1}=\lim _{x \rightarrow \infty} e^{x}=\infty
$$

Since the answer is not a number, there's no asymptote at ∞.

Now, consider $\lim _{x \rightarrow-\infty} \frac{e^{x}}{x-1}$. As $x \rightarrow-\infty, e^{x}$ approaches 0 , and $x-1$ approaches $-\infty$. Thus, this is of the form $\frac{0}{-\infty}$ which is clearly 0 . Therefore,

$$
\lim _{x \rightarrow-\infty} \frac{e^{x}}{x-1}=0
$$

Thus, there is an asymptote at $-\infty$, and it is $y=0$.
(e) [5 pts] Find the vertical asymptotes of $f(x)$. For each vertical asymptotes $x=a$, calculate $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$.

Solution:

A vertical asymptote a is a place where

$$
\lim _{x \rightarrow a^{-}} f(x)= \pm \infty \text { or } \lim _{x \rightarrow a^{+}} f(x)= \pm \infty
$$

Here, they occur where the denominator of $f(x)$ is equal to 0 . Setting $x-1$ to 0 , we see that the only possibility is $x=1$. When $x=1$, the numerator is $e^{1} \neq 0$, so $x=1$ is indeed an asymptote.
Now, doing the calculation of the limits:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} \frac{e^{x}}{x-1}=\frac{e}{0^{-}}=-\infty \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} \frac{e^{x}}{x-1}=\frac{e}{0^{+}}=\infty
\end{aligned}
$$

(f) [5 pts] Use the information from the previous parts of the question to sketch the graph of $f(x)$.

Solution:

Putting together all the information, and also graphing a couple of points, yields the following sketch:

(11) [10 pts$]$ Find the point on the parabola $y=x^{2}-2$ that is closest to the origin (that is, to the point $(0,0))$.

Solution:

Let the point on the parabola be (x, y). We want to minimize the distance to the origin, which is

$$
d=\sqrt{x^{2}+y^{2}}
$$

Since distance is positive, let's instead minimize $f=d^{2}=x^{2}+y^{2}$.
We need to find relationships between the variables enabling us to write f in terms of one variable. Here, since (x, y) is on the parabola $y=x^{2}-2$, we get that relationship, and therefore,

$$
f=x^{2}+\left(x^{2}-2\right)^{2}
$$

Since the x coordinate can be anything, the domain of $f(x)$ is $(-\infty, \infty)$.
To find the minimum value of $f(x)$, let us first find the critical points of f. Since $f(x)=$ $x^{2}+\left(x^{2}-2\right)^{2}=x^{2}+x^{4}-4 x^{2}+4=x^{4}-3 x^{2}+4$, we have that

$$
f^{\prime}(x)=4 x^{3}-6 x=2 x\left(2 x^{2}-3\right)
$$

$f^{\prime}(x)$ clearly exists everywhere. Thus, the only critical points occur where $f^{\prime}(x)=0$. Solving,

$$
0=f^{\prime}(x)=2 x\left(2 x^{2}-3\right) \Rightarrow x=0 \text { or } 2 x^{2}=3
$$

Thus, the critical points are $x=0$ and $x= \pm \sqrt{\frac{3}{2}}$.
Let us now use the first derivative to find the absolute minimum of f. Making the sign chart for f^{\prime}, we get:

	-	+	1	-	
$-\infty$	$-\sqrt{\frac{3}{2}}$		0		+
				∞	

Thus, f is decreasing on $(-\infty,-\sqrt{3 / 2})$, increasing on $(-\sqrt{3 / 2}, 0)$, decreasing on $(0, \sqrt{3 / 2})$, and increasing on $(\sqrt{3 / 2}, \infty)$. Sketching this, this makes it clear that the only places an absolute minimum might be attained are at $\pm \sqrt{3 / 2}$.

Checking, we see that

$$
\begin{aligned}
f(\sqrt{3 / 2}) & =\sqrt{3 / 2}^{2}+\left(\sqrt{3 / 2}^{2}-2\right)^{2}=\frac{3}{2}+\left(\frac{3}{2}-2\right)^{2}=\frac{3}{2}+\frac{1}{4}=\frac{7}{4} \\
f(-\sqrt{3 / 2}) & =(-\sqrt{3 / 2})^{2}+\left((-\sqrt{3 / 2})^{2}-2\right)^{2}=\frac{3}{2}+\left(\frac{3}{2}-2\right)^{2}=\frac{3}{2}+\frac{1}{4}=\frac{7}{4}
\end{aligned}
$$

Thus, we see that an absolute minimum is attained both at $\sqrt{3 / 2}$ and at $-\sqrt{3 / 2}$. Since we're asked for both coordinates, we need to calculate the y-value at those points. Calculating,

$$
\begin{aligned}
y(\sqrt{3 / 2}) & =(\sqrt{3 / 2})^{2}-2=\frac{3}{2}-2=-\frac{1}{2} \\
y(-\sqrt{3 / 2}) & =(-\sqrt{3 / 2})^{2}-2=\frac{3}{2}-2=-\frac{1}{2}
\end{aligned}
$$

Therefore, the two points at which the distance from the origin is minimal are

$$
(-\sqrt{3 / 2},-1 / 2) \text { and }(\sqrt{3 / 2},-1 / 2)
$$

(12) Solve the following problems:
(a) [5 pts] Find the general expression for a function $F(x)$ such that $F^{\prime}(x)=e^{2 x}-\sin (x)+\frac{1}{1+x^{2}}$.

Solution:

Using the rules for antiderivatives, we see that the general expression is

$$
F(x)=\frac{e^{2 x}}{2}+\cos (x)+\arctan (x)+C
$$

You can check that this works by taking the derivative of $F(x)$ and making sure you get the right answer.
(b) [5 pts] Find the function $F(x)$ such that $F^{\prime}(x)=2 x+1$ and $F(1)=3$.

Solution:

The general antiderivative of $2 x+1$ is

$$
F(x)=x^{2}+x+C
$$

To solve for C, we use the fact that $F(1)=3$. Plugging in,

$$
\begin{aligned}
3 & =F(1)=1^{2}+1+C=C+2 \\
\Rightarrow C & =1
\end{aligned}
$$

Therefore,

$$
F(x)=x^{2}+x+1
$$

(c) Find the function $F(x)$ such that $F^{\prime \prime}(x)=1+\frac{1}{x^{2}}$, with $F^{\prime}(1)=1$ and $F(1)=2$.

Solution:

Here, we need to take an antiderivative twice. $F^{\prime}(x)$ will be an antiderivative of $F^{\prime \prime}(x)=1+\frac{1}{x^{2}}$, and $F(x)$ is the antiderivative of $F^{\prime}(x)$. Using the general expression for an antiderivative of $1+\frac{1}{x^{2}}$, we see that

$$
F^{\prime}(x)=x-\frac{1}{x}+C
$$

and taking the general antiderivative of this, we get

$$
F(x)=\frac{x^{2}}{2}-\ln (x)+C x+D
$$

Now, we need to use the conditions to solve for C and D. Since $1=F^{\prime}(1)$,

$$
\begin{aligned}
1 & =F^{\prime}(1)=1-\frac{1}{1}+C \\
\Rightarrow C & =1
\end{aligned}
$$

Now, using the fact that $F(1)=2$ we can solve for D :

$$
\begin{aligned}
2 & =F(1)=\frac{1}{2}-\ln (1)+1+D=D+\frac{3}{2} \\
\Rightarrow \frac{1}{2} & =D
\end{aligned}
$$

Therefore, $F(x)=\frac{x^{2}}{2}-\ln (x)+x+\frac{1}{2}$.
(13) Solve the following problems:
(a) [5 pts] Estimate the area under $y=x^{2}$ from $x=1$ to $x=3$ using 4 rectangles and the right endpoint rule. Use the graph to explain whether this an underestimate or an overestimate.

Solution:

Here, we have $\Delta x=\frac{b-a}{n}=\frac{2}{4}=\frac{1}{2}$. Therefore,

$$
x_{0}=1, x_{1}=\frac{3}{2}, x_{2}=2, x_{3}=\frac{5}{2}, x_{4}=3
$$

Thus, since we're using right endpoints.

$$
\begin{aligned}
\text { height of first rectangle } & =\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \\
\text { height of second rectangle } & =2^{2}=4 \\
\text { height of third rectangle } & =\left(\frac{5}{2}\right)^{2}=\frac{25}{4} \\
\text { height of fourth rectangle } & =3^{2}=9
\end{aligned}
$$

Since the base of each rectangle is $\frac{1}{2}$, the total area is

$$
\frac{1}{2} \cdot \frac{9}{4}+\frac{1}{2} \cdot 4+\frac{1}{2} \cdot \frac{25}{4}+\frac{1}{2} \cdot 9=\frac{9+16+25+36}{8}=\frac{86}{8}=\frac{43}{4}
$$

From the picture, we see that the area of the rectangles contains the area under the curve. Therefore, this is an overestimate.
(b) [5 pts] Estimate the area under $y=x^{2}$ from $x=1$ to $x=3$ using 4 rectangles and the left endpoint rule. Use the graph to explain whether this an underestimate or an overestimate.

Solution:

Like in part (a), we have $\Delta x=\frac{b-a}{n}=\frac{2}{4}=\frac{1}{2}$ and

$$
x_{0}=1, x_{1}=\frac{3}{2}, x_{2}=2, x_{3}=\frac{5}{2}, x_{4}=3
$$

Thus, since we're using left endpoints.

$$
\text { height of first rectangle }=1^{2}=1
$$

$$
\text { height of second rectangle }=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}
$$

$$
\text { height of third rectangle }=2^{2}=4
$$

$$
\text { height of fourth rectangle }=\left(\frac{5}{2}\right)^{2}=\frac{25}{4}
$$

Since the base of each rectangle is $\frac{1}{2}$, the total area is

$$
\frac{1}{2} \cdot 1+\frac{1}{2} \cdot \frac{9}{4}+\frac{1}{2} \cdot 4+\frac{1}{2} \cdot \frac{25}{4}=\frac{4+9+16+25}{8}=\frac{54}{8}=\frac{27}{4}
$$

From the picture, we see that the area of the rectangles is contained in the area under the curve. Therefore, this is an underestimate.
(c) [5 pts] Estimate the area under $y=x^{2}$ from $x=1$ to $x=3$ using 4 rectangles and the midpoint rule. Is it immediately clear whether this is an underestimate or an overestimate?

Solution:

Like in part (a), we have $\Delta x=\frac{b-a}{n}=\frac{2}{4}=\frac{1}{2}$ and

$$
x_{0}=1, x_{1}=\frac{3}{2}, x_{2}=2, x_{3}=\frac{5}{2}, x_{4}=3
$$

Since the sample points are midpoints, we have that

$$
\begin{aligned}
& x_{1}^{*}=\frac{x_{0}+x_{1}}{2}=\frac{5}{4}, x_{2}^{*}=\frac{x_{1}+x_{2}}{2}=\frac{7}{4} \\
& x_{3}^{*}=\frac{x_{2}+x_{3}}{2}=\frac{9}{4}, x_{4}^{*}=\frac{x_{3}+x_{4}}{2}=\frac{11}{4}
\end{aligned}
$$

Therefore, plugging these in,

$$
\begin{aligned}
\text { height of first rectangle } & =\left(x_{1}^{*}\right)^{2}=\left(\frac{5}{4}\right)^{2}=\frac{25}{16} \\
\text { height of second rectangle } & =\left(x_{2}^{*}\right)^{2}=\left(\frac{7}{4}\right)^{2}=\frac{49}{16} \\
\text { height of third rectangle } & =\left(x_{3}^{*}\right)^{2}=\left(\frac{9}{4}\right)^{2}=\frac{81}{16} \\
\text { height of fourth rectangle } & =\left(x_{4}^{*}\right)^{2}=\left(\frac{11}{4}\right)^{2}=\frac{121}{16}
\end{aligned}
$$

Since the base of each rectangle is $\frac{1}{2}$, the total area is

$$
\frac{1}{2} \cdot \frac{25}{16}+\frac{1}{2} \cdot \frac{49}{16}+\frac{1}{2} \cdot \frac{81}{16}+\frac{1}{2} \cdot \frac{121}{16}=\frac{25+49+81+121}{32}=\frac{276}{32}=\frac{69}{8}
$$

From the picture, we see that it's not clear whether it's an overestimate or an underestimate.
(14) Solve the following problems:
(a) [5 pts] Express the sum $\frac{1}{4}+\frac{1}{5}+\cdot+\frac{1}{10}$ using sigma notation.

Solution:

This sum is clearly

$$
\sum_{i=4}^{10} \frac{1}{i}
$$

(b) [10 pts] Use the limit of Riemann sums with right endpoints to calculate the integral $\int_{0}^{2}\left(x^{2}+\right.$ 1) $d x$. You may use the formula

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution:

Here, we need to calculate an expression for the nth Riemann sum with right endpoints, then take the limit as $n \rightarrow \infty$.
For the nth Riemann sum, we have $\Delta x=\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n}$. Since $x_{0}=a=0$, we therefore have

$$
x_{0}=0, x_{1}=\frac{2}{n}, x_{2}=\frac{4}{n}, \ldots, x_{n}=\frac{2 n}{n}=2
$$

Therefore, since we're using right endpoints,

$$
\begin{gathered}
\text { height of first rectangle }=f\left(x_{1}\right)=1+x_{1}^{2}=1+\left(\frac{2}{n}\right)^{2} \\
\text { height of second rectangle } \\
\qquad \begin{aligned}
& \\
\vdots & \\
\text { height of } n \text {th rectangle } & =f\left(x_{1}\right)=1+x_{2}^{2}=1+\left(\frac{4}{n}\right)^{2}
\end{aligned}
\end{gathered}
$$

Thus, the whole Riemann sum is

$$
\frac{2}{n}\left(1+\left(\frac{2}{n}\right)^{2}\right)+\frac{2}{n}\left(1+\left(\frac{4}{n}\right)^{2}\right)+\cdots+\frac{2}{n}\left(1+\left(\frac{2 n}{n}\right)^{2}\right)
$$

and writing it in sigma notation and simplifying,

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{2}{n}\left(1+\left(\frac{2 i}{n}\right)^{2}\right) & =\sum_{i=1}^{n} \frac{2}{n}\left(1+\frac{4 i^{2}}{n^{2}}\right)=\sum_{i=1}^{n}\left(\frac{2}{n}+\frac{8 i^{2}}{n^{3}}\right) \\
& =\sum_{i=1}^{n} \frac{2}{n}+\sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}}=\frac{2}{n} \sum_{i=1}^{n} 1+\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\frac{2}{n} \cdot n+\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Thus, continuing to simplify, the nth Riemann sum R_{n} is

$$
\begin{aligned}
R_{n} & =2+\frac{4(n+1)(2 n+1)}{3 n^{2}}=2+\frac{4\left(2 n^{2}+3 n+1\right)}{3 n^{2}} \\
& =2+\frac{8}{3}+\frac{4}{n}+\frac{4}{3 n^{2}}
\end{aligned}
$$

Finally, we need to take the limit of R_{n} as $n \rightarrow \infty$. Clearly, $\frac{4}{n}$ and $\frac{4}{3 n^{2}}$ approach 0 as n approaches ∞, so

$$
\lim _{n \rightarrow \infty} R_{n}=2+\frac{8}{3}=\frac{14}{3}
$$

Thus, we have shown using Riemann sums that

$$
\int_{0}^{2}\left(x^{2}+1\right) d x=\frac{14}{3}
$$

(15) Find the values of the following definite integrals, using whichever tools you choose. State the results you're using.
(a) $[5 \mathrm{pts}]$

$$
\int_{-1}^{2} e^{x}-x d x
$$

Solution:

By the Fundamental Theorem of Calculus, to evaluate $\int_{a}^{b} f(x) d x$ we need to find an antiderivative $F(x)$ of $f(x)$, and then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Thus, we need an an antiderivative of $e^{x}-x$. This is clearly $e^{x}-\frac{x^{2}}{2}$. Therefore,

$$
\begin{aligned}
\int_{-1}^{2} e^{x}-x d x & =\left.\left(e^{x}-\frac{x^{2}}{2}\right)\right|_{-1} ^{2}=e^{2}-2-\left(e^{-1}-\frac{1}{2}\right) \\
& =e^{2}-e^{-1}-\frac{3}{2}
\end{aligned}
$$

(b) $[5 \mathrm{pts}]$

$$
\int_{\pi / 6}^{\pi} \cos (x) d x
$$

Solution:

The antiderivative of $\cos (x)$ is $\sin (x)$. Thus, using the Fundamental Theorem of Calculus,

$$
\int_{\pi / 6}^{\pi} \cos (x) d x=\left.\sin (x)\right|_{\pi / 6} ^{\pi}=\sin (\pi)-\sin (\pi / 6)=0-\frac{1}{2}=-\frac{1}{2}
$$

(c) $[5 \mathrm{pts}]$

$$
\int_{1}^{e} 1+\frac{1}{x} d x
$$

Solution:

The antiderivative of $1+\frac{1}{x}$ is $x+\ln (x)$. Thus,

$$
\begin{aligned}
\int_{1}^{e} 1+\frac{1}{x} d x & =\left.(x+\ln (x))\right|_{1} ^{e}=e+\ln (e)-1-\ln (1) \\
& =e+1-1-0=e
\end{aligned}
$$

