Homework 1

Section 1.5:

12. We start with the graph of $y=(0.5)^{x}$ (Figure 3) and shift it 2 units downward to obtain the graph of $y=(0.5)^{x}-2$. The horizontal asymptote of the final graph is $y=-2$.

13. We start with the graph of $y=2^{x}$ (Figure 2), reflect it about the y-axis, and then about the x-axis (or just rotate 180° to handle both reflections) to obtain the graph of $y=-2^{-x}$. In each graph, $y=0$ is the horizontal asymptote.

$y=2^{-x}$

$y=-2^{-x}$
14. (a) The denominator is zero when $1-e^{1-x^{2}}=0 \quad \Leftrightarrow \quad e^{1-x^{2}}=1 \quad \Leftrightarrow \quad 1-x^{2}=0 \quad \Leftrightarrow \quad x= \pm 1$. Thus, the function $f(x)=\frac{1-e^{x^{2}}}{1-e^{1-x^{2}}}$ has domain $\{x \mid x \neq \pm 1\}=(-\infty,-1) \cup(-1,1) \cup(1, \infty)$.
(b) The denominator is never equal to zero, so the function $f(x)=\frac{1+x}{e^{\cos x}}$ has domain \mathbb{R}, or $(-\infty, \infty)$.
15. Use $y=C a^{x}$ with the points $(1,6)$ and $(3,24) . \quad 6=C a^{1} \quad\left[C=\frac{6}{a}\right] \quad$ and $24=C a^{3} \quad \Rightarrow \quad 24=\left(\frac{6}{a}\right) a^{3} \Rightarrow$ $4=a^{2} \Rightarrow a=2 \quad[$ since $a>0]$ and $C=\frac{6}{2}=3$. The function is $f(x)=3 \cdot 2^{x}$.
16. Suppose the month is February. Your payment on the 28 th day would be $2^{28-1}=2^{27}=134,217,728$ cents, or $\$ 1,342,177.28$. Clearly, the second method of payment results in a larger amount for any month.

Section 1.6:

6. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.
7. We could draw a horizontal line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the function is not one-to-one.
8. First, we must determine x such that $f(x)=3$. By inspection, we see that if $x=1$, then $f(1)=3$. Since f is $1-1(f$ is an increasing function), it has an inverse, and $f^{-1}(3)=1$. If f is a 1-1 function, then $f\left(f^{-1}(a)\right)=a$, so $f\left(f^{-1}(2)\right)=2$.
9. (a) f is $1-1$ because it passes the Horizontal Line Test.
(b) Domain of $f=[-3,3]=$ Range of f^{-1}. Range of $f=[-1,3]=$ Domain of f^{-1}.
(c) Since $f(0)=2, f^{-1}(2)=0$.
(d) Since $f(-1.7) \approx 0, f^{-1}(0)=-1.7$.
10. Reflect the graph of f about the line $y=x$.

