Homework 2

Section 1.6:

17. First, we must determine x such that $g(x)=4$. By inspection, we see that if $x=0$, then $g(x)=4$. Since g is $1-1(g$ is an increasing function), it has an inverse, and $g^{-1}(4)=0$.
18. (a) The natural logarithm is the logarithm with base e, denoted $\ln x$.
(b) The common logarithm is the logarithm with base 10 , denoted $\log x$.
(c) See Figure 13.
19. (a) $\mathrm{By}(9), e^{\ln 300}=300$ and $\ln \left(e^{300}\right)=300$.
(b) A calculator gives $e^{\ln 300}=300$ and an error message for $\ln \left(e^{300}\right)$ since e^{300} is larger than most calculators can evaluate.
20. (a) $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6} \operatorname{since} \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$ and $\frac{\pi}{6}$ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(b) $\sec ^{-1} 2=\frac{\pi}{3}$ since $\sec \frac{\pi}{3}=2$ and $\frac{\pi}{3}$ is in $\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)$.
21. (a) $\cot ^{-1}(-\sqrt{3})=\frac{5 \pi}{6}$ since $\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\frac{5 \pi}{6}$ is in $(0, \pi)$.
(b) $\arccos \left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$ since $\cos \frac{2 \pi}{3}=-\frac{1}{2}$ and $\frac{2 \pi}{3}$ is in $[0, \pi]$.

Section 2.1:

2. (a) Slope $=\frac{2948-2530}{42-36}=\frac{418}{6} \approx 69.67$
(b) Slope $=\frac{2948-2661}{42-38}=\frac{287}{4}=71.75$
(c) Slope $=\frac{2948-2806}{42-40}=\frac{142}{2}=71$
(d) Slope $=\frac{3080-2948}{44-42}=\frac{132}{2}=66$

From the data, we see that the patient's heart rate is decreasing from 71 to 66 heartbeats/minute after 42 minutes. After being stable for a while, the patient's heart rate is dropping.
6. (a) $y=y(t)=10 t-1.86 t^{2}$. At $t=1, y=10(1)-1.86(1)^{2}=8.14$. The average velocity between times 1 and $1+h$ is $v_{\text {ave }}=\frac{y(1+h)-y(1)}{(1+h)-1}=\frac{\left[10(1+h)-1.86(1+h)^{2}\right]-8.14}{h}=\frac{6.28 h-1.86 h^{2}}{h}=6.28-1.86 h$, if $h \neq 0$.
(i) $[1,2]: h=1, v_{\text {ave }}=4.42 \mathrm{~m} / \mathrm{s}$
(ii) $[1,1.5]: h=0.5, v_{\text {ave }}=5.35 \mathrm{~m} / \mathrm{s}$
(iii) $[1,1.1]: h=0.1, v_{\mathrm{ave}}=6.094 \mathrm{~m} / \mathrm{s}$
(iv) $[1,1.01]: h=0.01, v_{\text {ave }}=6.2614 \mathrm{~m} / \mathrm{s}$
(v) $[1,1.001]: h=0.001, v_{\text {ave }}=6.27814 \mathrm{~m} / \mathrm{s}$
(b) The instantaneous velocity when $t=1$ (h approaches 0$)$ is $6.28 \mathrm{~m} / \mathrm{s}$.

