Homework 2

Section 1.6:

- 17. First, we must determine x such that g(x) = 4. By inspection, we see that if x = 0, then g(x) = 4. Since g is 1-1 (g is an increasing function), it has an inverse, and g⁻¹(4) = 0.
- 34. (a) The natural logarithm is the logarithm with base e, denoted $\ln x$.
 - (b) The common logarithm is the logarithm with base 10, denoted $\log x$.
 - (c) See Figure 13.
- **58.** (a) By (9), $e^{\ln 300} = 300$ and $\ln(e^{300}) = 300$.

(b) A calculator gives $e^{\ln 300} = 300$ and an error message for $\ln(e^{300})$ since e^{300} is larger than most calculators can evaluate.

- 64. (a) $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$ since $\tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$ and $\frac{\pi}{6}$ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
 - (b) $\sec^{-1} 2 = \frac{\pi}{3}$ since $\sec \frac{\pi}{3} = 2$ and $\frac{\pi}{3}$ is in $[0, \frac{\pi}{2}) \cup [\pi, \frac{3\pi}{2})$.
- **66.** (a) $\cot^{-1}\left(-\sqrt{3}\right) = \frac{5\pi}{6}$ since $\cot\frac{5\pi}{6} = -\sqrt{3}$ and $\frac{5\pi}{6}$ is in $(0, \pi)$.
 - (b) $\arccos(-\frac{1}{2}) = \frac{2\pi}{3}$ since $\cos \frac{2\pi}{3} = -\frac{1}{2}$ and $\frac{2\pi}{3}$ is in $[0, \pi]$.

Section 2.1:

1 (a) Slope = $\frac{2948 - 2530}{42 - 36} = \frac{418}{6} \approx 69.67$ (b) Slope = $\frac{2948 - 2661}{42 - 38} = \frac{287}{4} = 71.75$

 (c) Slope = $\frac{2948 - 2806}{42 - 40} = \frac{142}{2} = 71$ (d) Slope = $\frac{3080 - 2948}{44 - 42} = \frac{132}{2} = 66$

From the data, we see that the patient's heart rate is decreasing from 71 to 66 heartbeats/minute after 42 minutes. After being stable for a while, the patient's heart rate is dropping.

6. (a) $y = y(t) = 10t - 1.86t^2$. At t = 1, $y = 10(1) - 1.86(1)^2 = 8.14$. The average velocity between times 1 and 1 + h is $v_{ave} = \frac{y(1+h) - y(1)}{(1+h) - 1} = \frac{[10(1+h) - 1.86(1+h)^2] - 8.14}{h} = \frac{6.28h - 1.86h^2}{h} = 6.28 - 1.86h$, if $h \neq 0$. (i) [1, 2]: h = 1, $v_{ave} = 4.42$ m/s (ii) [1, 1.1]: h = 0.1, $v_{ave} = 6.094$ m/s (iv) [1, 1.01]: h = 0.01, $v_{ave} = 6.2614$ m/s (v) [1, 1.001]: h = 0.001, $v_{ave} = 6.27814$ m/s

(b) The instantaneous velocity when t = 1 (h approaches 0) is 6.28 m/s.