Homework 5

Section 2.5:

10. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps from one temperature to another.

(b) Continuous, the temperature at a specific time changes smoothly as the distance due west from New York City increases, without any instantaneous jumps.

(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one height to another without going through all of the intermediate values — at a cliff, for example.

(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.

(e) Discontinuous; when the lights are switched on (or off), the current suddenly changes between 0 and some nonzero value, without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.

$$\mathbf{19.}\ f(x) = \begin{cases} e^x & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$$

The left-hand limit of f at a=0 is $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} e^x = 1$. The right-hand limit of f at a=0 is $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x^2 = 0$. Since these limits are not equal, $\lim_{x\to 0} f(x)$ does not exist and f is discontinuous at 0.

20.
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{if } x \neq 1\\ 1 & \text{if } x = 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - x}{x^2 - 1} = \lim_{x \to 1} \frac{x(x - 1)}{(x + 1)(x - 1)} = \lim_{x \to 1} \frac{x}{x + 1} = \frac{1}{2},$$
but $f(1) = 1$, so f is discontinuous at 1 .

24.
$$f(x) = \frac{x^3 - 8}{x^2 - 4} = \frac{(x - 2)(x^2 + 2x + 4)}{(x - 2)(x + 2)} = \frac{x^2 + 2x + 4}{x + 2}$$
 for $x \neq 2$. Since $\lim_{x \to 2} f(x) = \frac{4 + 4 + 4}{2 + 2} = 3$, define $f(2) = 3$.

Then f is continuous at 2.

3

Section 2.6:

$$4. (a) \lim_{x \to \infty} g(x) = 2$$

(b)
$$\lim_{x \to -\infty} g(x) = -1$$

(c)
$$\lim_{x\to 0} g(x) = -\infty$$

(d)
$$\lim_{x \to 2^{-}} g(x) = -\infty$$

(e)
$$\lim_{x \to 2^+} g(x) = \infty$$

(f) Vertical:
$$x = 0$$
, $x = 2$;
horizontal: $y = -1$, $y = 2$

6.
$$\lim_{x \to 2} f(x) = \infty$$
, $\lim_{x \to -2^+} f(x) = \infty$,

$$\lim_{x \to -2^-} f(x) = -\infty, \quad \lim_{x \to -\infty} f(x) = 0,$$

$$\lim_{x \to \infty} f(x) = 0, \quad f(0) = 0$$

16.
$$\lim_{x \to \infty} \frac{1 - x^2}{x^3 - x + 1} = \lim_{x \to \infty} \frac{(1 - x^2)/x^3}{(x^3 - x + 1)/x^3} = \lim_{x \to \infty} \frac{1/x^3 - 1/x}{1 - 1/x^2 + 1/x^3}$$

$$\lim_{x \to \infty} \frac{1/x^3}{x^3 - \lim_{x \to \infty} 1/x} = \lim_{x \to \infty} \frac{1/x^3 - 1/x}{1 - 1/x^2 + 1/x^3}$$

$$= \frac{\lim_{x \to \infty} 1/x^3 - \lim_{x \to \infty} 1/x}{\lim_{x \to \infty} 1 - \lim_{x \to \infty} 1/x^2 + \lim_{x \to \infty} 1/x^3} = \frac{0 - 0}{1 - 0 + 0} = 0$$

18.
$$\lim_{x \to -\infty} \frac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5} = \lim_{x \to -\infty} \frac{(4x^3 + 6x^2 - 2)/x^3}{(2x^3 - 4x + 5)/x^3} = \lim_{x \to -\infty} \frac{4 + 6/x - 2/x^3}{2 - 4/x^2 + 5/x^3} = \frac{4 + 0 - 0}{2 - 0 + 0} = 2$$

34. Divide numerator and denominator by
$$e^{3x}$$
: $\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}} = \lim_{x \to \infty} \frac{1 - e^{-6x}}{1 + e^{-6x}} = \frac{1 - 0}{1 + 0} = 1$