Homework 6

Section 2.6:
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because as z — (~1/2)" the numerator is positive while the denominator

approaches 0 through positive values. Similarly, lim  f (z) = —o0,
z—(—1/2)+
:rl_igl_ f(x) = 00, and lim (z) = oo. Thus, z = —% and = = 2 are vertical

z—2t+

= T T3 o0 "3 °V= 1 is a horizontal asymptote.
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y=f(z) = 2t 21 =27 = 20t -2 The denominator is
zero when z = 0, —1, and 1, but the numerator is nonzero, so z = 0, z = —1, and

z = 1 are vertical asymptotes. Notice that as x — 0, the numerator and

denominator are both positive, so 1i1r(1) f(z) = co. The graph confirms our work.
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The graph of g is the same as the graph of f with the exception of a hole in the

2
graph of f at x = 1. By long division, g(z) = EL;C =x4+6+ ——3—03
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As T — oo, g(x) — F00, so there is no horizontal asymptote. The denominator

of giszerowhenz = 5. lim g(x) = —co and lim+ g(z) =oco0,s0x =5isa
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vertical asymptote. The graph confirms our work.

=g(z) forz # 1.




Section 2.7:

18. Since g(5) = —3, the point (5, —3) is on the graph of g. Since g'(5) = 4, the slope of the tangent line at z = 5 is 4.
Using the point-slope form of a line gives us y — (—3) = 4(z — 5), ory = 4o — 23.

20. Since (4,3) isony = f(z), f(4) = 3. The slope of the tangent line between (0, 2) and (4,3) is }, so f'(4) = 1.

22. We begin by drawing a curve through the origin with a slope of 1 to satisfy

g(0) = 0 and ¢'(0) = 1. We round off our figure at x = 1 to satisfy ¢'(1) = 0, t

and then pass through (2, 0) with slope —1 to satisfy g{2) = 0 and ¢'(2) = —1. R v
We round the figure at x = 3 to satisfy g'(3) = 0, and then pass through (4, 0) -t

with slope 1 to satisty g(4) = 0 and g'(4) = 1. Finally we extend the curve on

both ends to satisfy lim g(z) = coand lim g(z) = —oco.
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36. By Equation 5, lim = f'(m/4), where f(z) = tanz and a = /4.
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48. (a) f'(5) is the rate of growth of the bacteria population when t = 5 hours. Its units are bacteria per hour.

b) With unlimited space and nutrients, f* should increase as t increases; so f'(5) < f'(10). If the supply of nutrients is
pp

limited, the growth rate slows down at some point in time, and the opposite may be true.



