In-Class Work Solutions for April 13th

Part 1:

1. Let $f(x)=\frac{x}{x^{2}-1}$.
(a) Find the horizontal asymptotes of $f(x)$.

Solution:

By dividing both the numerator and the denominator by the highest degree of x in the denominator, we find that

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1-\frac{1}{x^{2}}}=\frac{\lim _{x \rightarrow \infty} \frac{1}{x}}{\lim _{x \rightarrow \infty}\left(1-\frac{1}{x^{2}}\right)} \\
& =\frac{0}{1-0}=0
\end{aligned}
$$

So, there is a horizontal asymptote $y=0$ at ∞. Similarly,

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\frac{x}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}} & =\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}}{1-\frac{1}{x^{2}}}=\frac{\lim _{x \rightarrow-\infty} \frac{1}{x}}{\lim _{x \rightarrow-\infty}\left(1-\frac{1}{x^{2}}\right)} \\
& =\frac{0}{1-0}=0
\end{aligned}
$$

Thus, there's a horizontal asymptote $y=0$ at $-\infty$.
(b) Find the vertical asymptotes of $f(x)$. For each vertical asymptote $x=L$, find

$$
\lim _{x \rightarrow L^{-}} f(x) \text { and } \lim _{x \rightarrow L^{+}} f(x)
$$

Solution:

We begin by discovering what values of x make the denominator zero, we find where the function is undefined, and thus we find its vertical asymptotes.
$x=1$ or -1 make $f(x)$ undefined.
Checking, the numerator isn't 0 at either of these, so they are defi-
nitely asymptotes. Now, working out the limits:
$\lim _{x \rightarrow-1^{-}} \frac{x}{x^{2}-1} \approx \frac{-1.01}{(-1.01)^{2}-1} \approx \frac{-1}{\text { tiny positive number }}=$ HUGE negative number $\lim _{x \rightarrow-1^{+}} \frac{x}{x^{2}-1} \approx \frac{-0.99}{(-0.99)^{2}-1} \approx \frac{-1}{\text { tiny negative number }}=$ HUGE positive number $\lim _{x \rightarrow 1^{-}} \frac{x}{x^{2}-1} \approx \frac{0.99}{(0.99)^{2}-1} \approx \frac{1}{\text { tiny negative number }}=$ HUGE negative number $\lim _{x \rightarrow 1^{+}} \frac{x}{x^{2}-1} \approx \frac{1.01}{(1.01)^{2}-1} \approx \frac{1}{\text { tiny positive number }}=$ HUGE positive number

Therefore, combining all these,

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} \frac{x}{x^{2}-1} & =-\infty, \lim _{x \rightarrow-1^{+}} \frac{x}{x^{2}-1}=\infty \\
\lim _{x \rightarrow 1^{-}} \frac{x}{x^{2}-1} & =-\infty \lim _{x \rightarrow 1^{+}} \frac{x}{x^{2}-1}=\infty
\end{aligned}
$$

Part 2:

1. Let $f(x)$ be the same as in Part 1 above.
(a) Use all the information you've gathered so far to make a sketch of $f(x)$:

Solution:

Here it is:

(b) Sketch a function $g(x)$ that satisfies the following:

- Concave up on $(-\infty,-2) \cup(2, \infty)$ and concave down on $(-2,0) \cup$ $(0,2)$.
- Horizontal asymptote $y=0$ at ∞ and $y=1$ at $-\infty$.
- Local maxes at $(1,1)$ and $(-1,2)$.
- A local min at $(0,0)$.

Solution:

Here it is:

