In-Class Work Solutions for April 18th

Part 1:

1. Calculate the following limits. Only use L'Hospital's when appropriate.
(a) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$.

Solution:

Attempting to plug in gives 1^{∞}, so we're going to need to do more work. Let's go through the algorithm.

1. Let $y=(1+x)^{1 / x}$. Then,

$$
\ln (y)=\ln \left((1+x)^{1 / x}\right)=\frac{1}{x} \ln (1+x)=\frac{\ln (1+x)}{x}
$$

2. We need to calculate

$$
\lim _{x \rightarrow 0} \ln (y)=\lim _{x \rightarrow \infty} \frac{\ln (1+x)}{x}
$$

Note that

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln (1+x) & =\ln (1)=0 \\
\lim _{x \rightarrow 0} x & =0
\end{aligned}
$$

so the form of the limit is $\frac{0}{0}$. Therefore, we can use L'Hospitals:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln (1+x)}{x} & =\lim _{x \rightarrow \infty} \frac{1 /(1+x)}{1} \\
& =\lim _{x \rightarrow \infty} \frac{1}{1+x}=1
\end{aligned}
$$

3. Using the result from Step 2, to get the actual limit we take e to the power of what we found. Thus,

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e^{1}=e
$$

(b) $\lim _{x \rightarrow 0}(1+\sin (x))^{x}$

Solution:

Here, it turns out we can just plug in.

$$
\lim _{x \rightarrow 0}(1+\sin (x))^{x}=(1+\sin (0))^{0}=1^{0}=1
$$

This works because 1^{0} is not an indeterminate form - it's just 1 .

Part 2:

1. Let $f(x)=\frac{e^{x}}{e^{x}-1}$.
(a) Find the horizontal asymptotes of $f(x)$. Feel free to use L'Hospital's when appropriate.

Solution:

To find horizontal asymptotes, take limits as x approaches ∞ and $-\infty$. Now, $\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}-1}$ is clearly in the form $\frac{\infty}{\infty}$ since as $x \rightarrow \infty$, e^{x} approaches ∞. Therefore, we can use L'Hospital's:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}-1} & =\lim _{x \rightarrow \infty} \frac{\left(e^{x}\right)^{\prime}}{\left(e^{x}-1\right)^{\prime}} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}}=\lim _{x \rightarrow \infty} 1=1
\end{aligned}
$$

Now, note that as $x \rightarrow-\infty, e^{x}$ approaches 0 . (Check the graph of e^{x} if you don't remember this!) Thus,

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{e^{x}}{e^{x}-1} & =\frac{\lim _{x \rightarrow-\infty} e^{x}}{\lim _{x \rightarrow-\infty}\left(e^{x}-1\right)} \\
& =\frac{0}{0-1}=0
\end{aligned}
$$

Thus, $y=1$ is the asymptote at ∞, and $y=0$ is the asymptote at $-\infty$.
(b) Find the vertical asymptotes of $f(x)$. For each vertical asymptote $x=L$, find

$$
\lim _{x \rightarrow L^{-}} f(x) \text { and } \lim _{x \rightarrow L^{+}} f(x)
$$

Solution:

Vertical asymptotes exist where either the denominator is 0 or the numerator blows up. Since the numerator never blows up, set the denominator to 0 :

$$
\begin{aligned}
e^{x}-1 & =0 \\
\Rightarrow e^{x} & =1 \\
\Rightarrow x & =\ln (1)=0
\end{aligned}
$$

Thus, our only potential vertical asymptote is at $x=0$. To see if it's actually an asymptote, check the left-hand and right-hand limits (one of them has to be $\pm \infty$, or it's not an asymptote):

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{e^{x}-1} \approx \frac{e^{0.01}}{e^{0.01}-1} \approx \frac{1}{\text { tiny positive } \#}=\text { big positive } \#
$$

since e^{x} is an increasing function, and hence $e^{0.01}$ is greater than 1 . Thus,

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{e^{x}-1}=\infty
$$

Similarly,

$$
\lim _{x \rightarrow 0^{-}} \frac{e^{x}}{e^{x}-1} \approx \frac{e^{-0.01}}{e^{-0.01}-1} \approx \frac{1}{\text { tiny negative } \#}=\text { big negative } \#
$$

and therefore

$$
\lim _{x \rightarrow 0^{-}} \frac{e^{x}}{e^{x}-1}=-\infty
$$

The above calculations show that indeed, $x=0$ is a vertical asymptote.
(c) Find the intervals on which $f(x)$ is increasing/decreasing.

Solution:

This, as usual, requires working with $f(x)$. Using the quotient rule,

$$
\begin{aligned}
\left(\frac{e^{x}}{e^{x}-1}\right)^{\prime} & =\frac{\left(e^{x}-1\right)\left(e^{x}\right)^{\prime}-\left(e^{x}-1\right)^{\prime} e^{x}}{\left(e^{x}-1\right)^{2}} \\
& =\frac{\left(e^{x}-1\right) e^{x}-e^{x} \cdot e^{x}}{\left(e^{x}-1\right)^{2}} \\
& =-\frac{e^{x}}{\left(e^{x}-1\right)^{2}}
\end{aligned}
$$

To find the places where $f^{\prime}(x)$ could change sign, check where $f^{\prime}(x)=$ 0 or doesn't exist.
$f^{\prime}(x)=0$: For $f^{\prime}(x)$ to be 0 , the numerator must be 0 . Thus,

$$
e^{x}=0
$$

Since e^{x} is always positive, this has no solutions.
$f^{\prime}(x)$ doesn't exist: This happens when the denominator is 0 or the numerator doesn't exist. Since the numerator always exists, set the denominator to 0 :

$$
\begin{aligned}
\left(e^{x}-1\right)^{2} & =0 \\
\Rightarrow e^{x} & =1 \\
\Rightarrow x & =\ln (1)=0
\end{aligned}
$$

Thus, the only places the derivative could change sign is at 0 . Checking, we see that $f^{\prime}(-1)$ is negative, as is $f^{\prime}(1)$. Therefore, $f(x)$ is decreasing on $(-\infty, 0) \cup(0, \infty)$ (but it's not decreasing everywhere, since it's not defined at 0 .)
(d) It turns out that the function is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$. Use this, as well as the information gathered, to sketch $f(x)$.

Solution:

Here it is:

