In-Class Work Solutions for April 2nd

1. Find the absolute maximum value of $f(x)=x(4-3 x)^{1 / 3}$ on the interval [0, 4].

Solution:

Here, we have a continuous function on a closed interval. Thus, we can use the closed interval method. Let us go through the algorithm.

1. We start by finding the critical points of f in $(0,4)$. To do so, begin by finding the derivative:

$$
\begin{aligned}
\left(x(4-3 x)^{1 / 3}\right)^{\prime} & =(x)^{\prime}(4-3 x)^{1 / 3}+x\left((4-3 x)^{1 / 3}\right)^{\prime} \\
& =1 \cdot(4-3 x)^{1 / 3}+x \cdot \frac{1}{3}(4-3 x)^{-2 / 3} \cdot(4-3 x)^{\prime} \\
& =(4-3 x)^{1 / 3}-x(4-3 x)^{-2 / 3}
\end{aligned}
$$

It now turns out to be easiest to combine the above two terms into a single fraction before proceeding:

$$
\begin{aligned}
f^{\prime}(x) & =(4-3 x)^{1 / 3}-x(4-3 x)^{-2 / 3} \\
& =(4-3 x)^{1 / 3}-\frac{x}{(4-3 x)^{2 / 3}} \\
& =(4-3 x)^{1 / 3} \cdot \frac{(4-3 x)^{2 / 3}}{(4-3 x)^{2 / 3}}-\frac{x}{(4-3 x)^{2 / 3}} \\
& =\frac{(4-3 x)^{1 / 3}(4-3 x)^{2 / 3}-x}{(4-3 x)^{2 / 3}} \\
& =\frac{(4-3 x)-x}{(4-3 x)^{2 / 3}}=\frac{4-4 x}{(4-3 x)^{2 / 3}}
\end{aligned}
$$

Now, we need to consider where $f^{\prime}(x)$ doesn't exist and where $f^{\prime}(x)=$ 0 .
$f^{\prime}(x)$ doesn't exist: Here, we have a fraction whose denominator and numerator always exist. That means the only way $f^{\prime}(x)$ doesn't exist is if the denominator is 0 :

$$
\begin{aligned}
0 & =(4-3 x)^{2 / 3} \\
\Rightarrow 4-3 x & =0 \\
\Rightarrow x & =\frac{4}{3}
\end{aligned}
$$

$f^{\prime}(x)=0$: This occurs when the numerator is 0 : thus, we solve

$$
\begin{array}{r}
4-4 x=0 \\
\Rightarrow 4 x=4 \\
\Rightarrow x=1
\end{array}
$$

Thus, we found two values of x where $f^{\prime}(x)$ is either 0 or doesn't exist. Checking, we see that both are in the domain of f, and hence are actually critical numbers. Finally, we only take the critical numbers in the interval $(0,4)$: however, in this case that includes both of them.
2. Now, we plug in the x-values from the previous step into f :

$$
\begin{aligned}
f(4 / 3) & =4 / 3 \cdot(4-3 \cdot 4 / 3)^{1 / 3}=4 / 3 \cdot(0)^{1 / 3}=0 \\
f(1) & =1 \cdot(4-3 \cdot 1)^{1 / 3}=1 \cdot 1^{1 / 3}=1
\end{aligned}
$$

3. Continue by plugging in the endpoints into f :

$$
\begin{aligned}
f(0) & =0 \cdot(4-3 \cdot 0)^{1 / 3}=0 \cdot 4^{1 / 3}=0 \\
f(4) & =4 \cdot(4-3 \cdot 4)^{1 / 3}=4 \cdot(-8)^{1 / 3} \\
& =4 \cdot(-2)=-8
\end{aligned}
$$

4. Finally, comparing the values we got in Steps 2 and 3, we see that

The absolute minimum of $f(x)$ is -8 , attained at $x=4$.
The absolute maximum of $f(x)$ is 1 , attained at $x=1$.
2. Consider the function $f(x)=\frac{1}{x}$.
(a) Sketch the function $f(x)$. What is its absolute minimum value on $[-1,1]$?

Solution:

Clearly, $f(x)$ is a hyperbola. Here's a sketch:

It should be clear from the picture (and the fact that $f(x)$ approaches $-\infty$ as x approaches 0 from the left) that $f(x)$ doesn't have an absolute minimum on $[-1,1]$.
(b) Try to use the closed interval method to find the absolute minimum of $f(x)$ on the interval $[-1,1]$. What goes wrong?

Solution:

Let us try to go through the algorithm.

1. Start by finding the critical points of $f(x)$. Here,

$$
f^{\prime}(x)=\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}
$$

Recall that a critical point is a number in the domain of f such that $f^{\prime}(x)$ is 0 or doesn't exist. It's clear from the above formula that $f^{\prime}(x)$ is never equal to 0 , and that it doesn't exist when the denominator x^{2} is 0 . Thus, the only potential critical point is $x=0$. However, since $f(0)$ isn't defined, 0 isn't in the domain of f and hence isn't actually a critical point. Therefore, there are no critical points.
2. We didn't find any critical points, so there's nothing to plug in.
3. Plug in the endpoints:

$$
\begin{aligned}
f(1) & =\frac{1}{1}=1 \\
f(-1) & =\frac{1}{-1}=-1
\end{aligned}
$$

4. The closed interval test says that the absolute minimum value of $f(x)$ on $[-1,1]$ is -1 . This clearly doesn't match the picture!
What went wrong: In fact, it turns out that the closed interval test can't be used here! It can only be used for functions that are continuous on a given closed interval, and it should be abundantly clear from our picture that $f(x)$ isn't continuous at 0 .
