In-Class Work Solutions for April 25th

Part 1:

1. For the $f(x)$ in the picture below, calculate the following integrals:

(a) $\int_{0}^{1} f(x) d x$.

Solution:

By definition, this requires us to calculate the shaded-in blue area in the following picture:

This can clearly be split up as the area of a triangle plus the area of a square. Thus,

$$
\int_{0}^{1} f(x) d x=\frac{1}{2} \cdot 2 \cdot 1+1 \cdot 1=2
$$

(b) $\int_{0}^{3} f(x) d x$.

Solution:

By definition, this requires us to calculate the shaded-in blue area minus the shaded-in yellow area in the following picture:

Working these out,

$$
\begin{aligned}
\text { Blue area } & =\frac{1}{2} \cdot 3 \cdot \frac{3}{2}=\frac{9}{4} \\
\text { Yellow area } & =\frac{1}{2} \cdot 1 \cdot \frac{1}{2}+1=\frac{5}{4}
\end{aligned}
$$

Thus,

$$
\int_{0}^{3} f(x) d x=\frac{9}{4}-\frac{5}{4}=\frac{4}{4}=1
$$

2. Use a sketch of the function $f(x)=|x|$ to calculate:
(a) $\int_{-1}^{1}|x| d x$.

Solution:

This is the shaded-in blue area in the following picture:

Thus,

$$
\int_{-1}^{1}|x| d x=\frac{1}{2} \cdot 1 \cdot 1+\frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2}+\frac{1}{2}=\boxed{1}
$$

(b) $\int_{0}^{2}|x| d x$.

Solution:

This is the shaded-in blue area in the following picture:

Thus,

$$
\int_{0}^{2}|x| d x=\frac{1}{2} \cdot 2 \cdot 2=\boxed{2}
$$

Part 2:

1. For the following questions, you don't need to evaluate the sums - just write them down. Estimate the integral $\int_{0}^{1} x^{2} d x$ using:
(a) 5 rectangles and right endpoints. Make sure to draw a picture of what's going on. Is this an overestimate or an underestimate?

Solution:

I'm not going to draw a picture here, but you really should if you aren't sure where anything comes from. Here, the estimate is:

$$
\int_{0}^{1} x^{2} d x \approx \frac{1}{5} \cdot \frac{1}{25}+\frac{1}{5} \cdot \frac{4}{25}+\frac{1}{5} \cdot \frac{9}{25}+\frac{1}{5} \cdot \frac{16}{25}+\frac{1}{5} \cdot 1
$$

(b) Can you guess what the estimate using 10 rectangles and right endpoints would be, using part (a) and the example from class, without drawing a picture?

Solution:

The estimate is:
$\int_{0}^{1} x^{2} d x \approx \frac{1}{10} \cdot \frac{1}{100}+\frac{1}{10} \cdot \frac{4}{100}+\frac{1}{10} \cdot \frac{9}{100}+\cdots+\frac{1}{10} \cdot \frac{81}{100}+\frac{1}{10} \cdot 1$
(Here, I put . . . in the middle in order not to have to write out all the ten terms - it should be clear what they are.)

