
In-Class Questions for April 4th

Part 1:

1. Find the intervals on which f(x) = x+
1

2x2
is increasing and the intervals

it’s decreasing.

Solution:

Let us go through the algorithm.

1. To find all places where f ′(x) could change sign, calculate f ′(x) and
see where it’s 0 or does not exist.

f ′(x) =

(
x +

1

2x2

)′
=

(
x +

1

2
x−2

)′
= 1 +

1

2
(−2)x−3 = 1− x−3

= 1− 1

x3
=

x3 − 1

x3

f ′(x) = 0: To find where f ′(x) is 0, set the numerator to 0:

x3 − 1 = 0

⇒ x3 = 1

⇒ x =
3
√

1 = 1

f ′(x) doesn’t exist: To find where f ′(x) doesn’t exist, set the denom-
inator to 0:

x3 = 0

⇒ x = 0

Thus, we have to plot the two points x = 0 and x = 1 and on our
number line.

2. We need to test the intervals (−∞, 0), (0, 1) and (1,∞). Let’s plug
in −1 for the first interval, 0.5 for the second interval, 2 for the third
interval:

f ′(−1) =
(−1)3 − 1

(−1)3
=
−2

−1
= 2 > 0

f ′(0.5) =
(0.5)3 − 1

(0.5)3
=

0.125− 1

0.125
=
−0.875

0.125
< 0

f ′(2) =
(2)3 − 1

23
=

7

8
> 0

1



Therefore, we see that

f ′(x) is


positive x < 0

negative 0 < x < 1

positive 1 < x

3. Therefore, the answer is that f(x) is increasing on (−∞, 0) and (1,∞) ,

and f(c) is decreasing on (0, 1) .

2. The First Derivative Test: Fill in the blanks in the following statement:

If c is a critical number of a continuous function f , then

• If f ′(x) changes from positive to negative at c, f(x) has a local max
at c.

• If f ′(x) changes from negative to positive at c, f(x) has a local min
at c.

If you’re not sure, sketch a picture of f(x) to see what’s going on!

Part 2:

1. Let f(x) = x +
1

2x2
, just like above.

Use the answers from Part 1, the First Derivative Test, and common sense
to determine:

(a) The x-values at which f(x) has local minimums and maximums.

Solution:

By the First Derivative Test, f(x) has a local minimum at a crit-
ical number c if f ′(x) changes sign from negative to positive at c. We
see from the answer to Problem 2 in Part 1 above that f ′(x) changes
from negative to positive at x = 1. Furthermore, it is easy to check
that 1 is in the domain of f , and such is actually a critical number.
Therefore,

f(x) has a local minimum at x = 1.

Similarly, f(x) has a local maximum at a critical number c if f ′(x)
changes from positive to negative at c. The only place that f ′(x)
changes from positive to negative is at x = 0. However, since f(0)
isn’t defined, 0 isn’t in the domain of f and as such isn’t a critical
number. Therefore, it’s not a local max. Thus,

f(x) has no local maximums.
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(b) The absolute minimum of f(x) on [−1, 1]. Could we have also used
the closed interval test?

Solution:

Looking at the answer from Part 1, Problem 2 we see that the shape
of f(x) (very approximately!) is something like this:

I drew the picture with an asymptote at 0 (which is indeed the case),
but that’s not even important for the logic of the problem. The
important thing is just the shape.

Looking at the graph of the function, it’s abundantly clear that the
only possible places for an absolute minimum are at x = 1 and at
x = −1: given the way it increases/decreases, every other point will
be have a bigger y-value than one or the other of them. (I drew the
picture as if it’s smaller at −1, but again, that’s not obvious without
trying it!) Thus, we just need to test those points:

f(−1) = −1 +
1

2 · (−1)2
= −1

2

f(1) = 1 +
1

2 · 12
=

3

2

Therefore, we see that the absolute minimum on [−1, 1] is attained
at −1, and

The absolute minimum on [−1, 1] is −1

2
.

We could not have used the closed interval test – that only applies
for functions that are continuous on a given interval, and our function
isn’t continuous at 0.
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(c) The absolute minimum of f(x) on [0.5, 1.5]. Could we have also used
the closed interval test?

Solution:

Again, looking at the picture above, it’s easy to see that the only
possible place for an absolute minimum is at x = 1. (This is clear
since it’s bigger both to the right and to the left of x = 1.) Using the
value we found by plugging in earlier, we see that

The absolute minimum on [0.5, 1.5] is
3

2
.

We could have used the closed interval test, since our function is
continuous on [0.5, 1.5], as 0 is not included in that interval.
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