In-Class Work Solutions for April 6th

Part 1:

1. Let $f(x)=x^{2 / 3}+\frac{2 x}{3}$.
(a) Calculate $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution:

Calculating,

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2 / 3}+\frac{2 x}{3}\right)^{\prime}=\left(x^{2 / 3}+\frac{2}{3} x\right)^{\prime} \\
& =\frac{2}{3} x^{-1 / 3}+\frac{2}{3}
\end{aligned}
$$

Differentiating again,

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(\frac{2}{3} x^{-1 / 3}+\frac{2}{3}\right)^{\prime}=\frac{2}{3} \cdot\left(-\frac{1}{3}\right) x^{-4 / 3} \\
& =-\frac{2}{9} x^{-4 / 3}
\end{aligned}
$$

(b) Find the intervals on which $f(x)$ is increasing/decreasing.

Solution:

To do this, we find the places where $f^{\prime}(x)$ could change sign, plot them on the number line, and find the sign of $f^{\prime}(x)$ on each interval. $f^{\prime}(x)$ changes signs only at places where $f^{\prime}(x)$ doesn't exist or is 0. Simplifying a little,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2}{3} x^{-1 / 3}+\frac{2}{3}=\frac{2}{3 \sqrt[3]{x}}+\frac{2}{3} \\
& =\frac{2}{3 \sqrt[3]{x}}+\frac{2}{3} \frac{\sqrt[3]{x}}{\sqrt[3]{x}} \\
& =\frac{2+2 \sqrt[3]{x}}{3 \sqrt[3]{x}}
\end{aligned}
$$

$f^{\prime}(x)$ doesn't exist: This happens if the denominator is 0 . Here, this happens if

$$
\begin{aligned}
\sqrt[3]{x} & =0 \\
\Rightarrow x & =0
\end{aligned}
$$

$f^{\prime}(x)=0$: This happens if the numerator is 0 . Thus,

$$
\begin{aligned}
2+2 \sqrt[3]{x} & =0 \\
\Rightarrow 2 \sqrt[3]{x} & =-2 \\
\Rightarrow \sqrt[3]{x} & =-1 \\
\Rightarrow x & =(-1)^{3}=-1
\end{aligned}
$$

Therefore, we have two places where f^{\prime} could change sign: $x=0$ and $x=-1$. We need to test each of the intervals $(\infty,-1),(-1,0)$ and $(0, \infty)$ to see the sign of f^{\prime} on each one. We test -8 in $(-\infty,-1)$, $-1 / 8$ in $(-1,0)$ and 1 in $(1, \infty)$ (these numbers were chosen to make cube roots easier!):

$$
\begin{aligned}
f^{\prime}(-8) & =\frac{2+2 \sqrt[3]{-8}}{3 \sqrt[3]{-8}}=\frac{2+2 \cdot(-2)}{3 \cdot(-2)} \\
& =\frac{-2}{-6}=\frac{1}{3}>0 \\
f^{\prime}(-1 / 8) & =\frac{2+2 \sqrt[3]{-1 / 8}}{3 \sqrt[3]{-1 / 8}}=\frac{2+2 \cdot(-1 / 2)}{3 \cdot(-1 / 2)} \\
& =\frac{1}{-3 / 2}=-\frac{2}{3}<0 \\
f^{\prime}(1) & =\frac{2+2 \sqrt[3]{1}}{3 \sqrt[3]{1}}=\frac{2+2 \cdot 1}{3 \cdot 1} \\
& =\frac{4}{3}>0
\end{aligned}
$$

Therefore, we see that $f^{\prime}(x)$ is positive on $(-\infty,-1)$ and $(0, \infty)$, and negative on $(-1,0)$. Thus, $f(x)$ is increasing on $(-\infty, 0)$ and $(0, \infty)$ and decreasing on $(-1,0)$.
(c) Find the intervals on which $f(x)$ is concave up/down.

Solution:

This question is just like part (a), except we use the the second derivative. Start by finding the places where $f^{\prime \prime}(x)$ could change sign, which are the places where $f^{\prime \prime}(x)$ doesn't exist or is equal to 0 . Again, simplifying a little,

$$
f^{\prime \prime}(x)=\frac{2}{9} x^{-4 / 3}=-\frac{2}{9 x^{4 / 3}}=-\frac{2}{9(\sqrt[3]{x})^{4}}
$$

$f^{\prime}(x)$ doesn't exist: This happens when the denominator is 0 . It's easy to see that this is only possible if $x=0$.
$f^{\prime}(x)=0$: This happens when the numerator is 0 . Since the numerator is never 0 , this never happens.
Thus, there's only one places where $f^{\prime \prime}(x)$ could change sign, and that's at $x=0$. We test the two intervals $(-\infty, 0)$ and $(0, \infty)$:

$$
\begin{aligned}
f^{\prime \prime}(-1) & =-\frac{2}{9(\sqrt[3]{-1})^{4}}=-\frac{2}{9 \cdot(-1)^{4}} \\
& =-\frac{2}{9}<0 \\
f^{\prime \prime}(1) & =-\frac{2}{9(\sqrt[3]{1})^{4}}=-\frac{2}{9 \cdot(1)^{4}} \\
& =-\frac{2}{9}>0
\end{aligned}
$$

Thus, $f^{\prime \prime}(x)$ is negative everywhere, and therefore $f(x)$ is concave down everywhere. Since $f^{\prime}(x)$ isn't defined at 0 , it's probably best to write this as $f(x)$ is concave down on $(-\infty, 0)$ and $(0, \infty)$ although I won't be too picky about that!
2. Second Derivative Test: Fill in the blanks: for any function $f(x)$, if c satisfies $f^{\prime}(c)=0$, the following holds:

- If $f^{\prime \prime}(c)>0$, then $f(x)$ has a local minimum at c.
- If $f^{\prime \prime}(c)<0$, then $f(x)$ has a local maximum at c.

If you're not sure, sketch a picture of $f(x)$ to see what's going on!

