In-Class Work Solutions for April 9th

1. Let $f(x)=x^{2 / 3}+\frac{2 x}{3}$, like last class. Recall that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2}{3} x^{-1 / 3}+\frac{2}{3} \\
f^{\prime \prime}(x) & =-\frac{2}{9} x^{-4 / 3}
\end{aligned}
$$

The number line we found for f^{\prime} was as follows:

As usual, the points on the above line were places were $f^{\prime}(x)$ is 0 or doesn't exist.
The number line we found for $f^{\prime \prime}$ is here:

Very similarly to above, the places marked on this number line are the places where $f^{\prime \prime}(x)$ is 0 or doesn't exist.
Using all this information, do the following questions:
(a) Find the critical numbers for $f(x)$.

Solution:

As noted above, the numbers plotted on the number line for f^{\prime} are where $f^{\prime}(x)$ is 0 or doesn't exist. Thus, we just have to check which ones are actually in the domain of f. Rewriting,

$$
f(x)=x^{2 / 3}+\frac{2 x}{3}=\left(x^{1 / 3}\right)^{2}+\frac{2 x}{3}=\sqrt[3]{x}^{2}+\frac{2 x}{3}
$$

Since the cube root of x is defined for all x, and we don't have anything in the denominator, $f(x)$ is defined for all x. Therefore, the domain of x is all real numbers, and all the numbers on the f^{\prime} number line are critical numbers. Thus,

$$
\text { The critical numbers for } f(x) \text { are }-1 \text { and } 0
$$

(b) Find the inflection points for $f(x)$.

Solution:

The inflection points are the points at which $f(x)$ changes concavity, as long as $f(x)$ is continuous there. Since looking at the number line for $f^{\prime \prime}, f(x)$ never changes concavity, there are no inflection points.
(c) Check whether each number from (a) is a local min or a local max using the first derivative test. Does this test apply to all of them?

Solution:

The first derivative test applies as long as the function is continuous at that point. Since our $f(x)$ is continuous everywhere, the first derivative test applies to all critical numbers.
At $x=-1, f^{\prime}(x)$ changes from positive to negative. Thus,

$$
x=-1 \text { is a local max. }
$$

At $x=0, f^{\prime}(x)$ changes from negative to positive. Thus,

$$
x=0 \text { is a local min. }
$$

(d) Check whether each number from (a) is a local min or a local max using the second derivative test. Does this test apply to all of them?

Solution:

The second derivative test only applies to critical numbers c where $f^{\prime}(c)$ is equal to 0 . Checking, we see that

$$
\begin{aligned}
& f^{\prime}(0) \text { doesn't exist } \\
& f^{\prime}(-1)=0
\end{aligned}
$$

Therefore, the only critical number to which the second derivative test applies is $x=-1$. Plugging it into the second derivative,

$$
\begin{aligned}
f^{\prime \prime}(-1) & =-\frac{2}{9}(-1)^{-4 / 3}=-\frac{2}{9(-1)^{4 / 3}} \\
& =-\frac{2}{9(\sqrt[3]{-1})^{4}}=-\frac{2}{9(-1)^{4}} \\
& =-\frac{2}{9}
\end{aligned}
$$

Thus, the function is concave down at -1 , and therefore $x=-1$ is a local max. This matches what we got with the first derivative test, which is good!
(e) Find the absolute minimum of $f(x)$ on $(-1,1)$ by using the shape of the function. Does the Closed Interval Test apply?

Solution:

Our information for f^{\prime} tells us that $f(x)$ is decreasing from -1 to 0 and then increasing from 0 to 1 . (Sketch this if you need to visualize it!) This tells us that the only possible place for an absolute minimum is at $x=0$. Since

$$
f(0)=0^{2 / 3}+\frac{2 \cdot 0}{9}=0
$$

we see that
The absolute minimum of $f(x)$ on $(-1,1)$ is 0 , attained at 0

The Closed Interval Test does not apply, since $(-1,1)$ isn't a closed interval!
(f) Try to use the information about the shape of the graph above to sketch the function $f(x)$. If it helps, plot a couple of points!

Solution:

Here's the sketch:

