In-Class Work Solutions for February 29th

Part 1:

1. (a) Let $f(x)=3^{x}$. Find $f^{\prime}(x)$ using the chain rule the way just shown in class.

Solution:

We have that

$$
f(x)=3^{x}=\left(e^{\ln (3)}\right)^{x}=e^{\ln (3) x}
$$

Therefore, using the Chain Rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(e^{\ln (3) x}\right)^{\prime}=e^{\ln (3) x}(\ln (3) x)^{\prime} \\
& =e^{\ln (3) x} \ln (3) \\
& =3^{x} \ln (3)
\end{aligned}
$$

(b) Generalizing the example from lecture and part (a) above, formulate a rule for what the derivative of a^{x} is.

Solution:

We saw from class that the derivative of 2^{x} is $2^{x} \ln (2)$. Above, we saw that the derivative of 3^{x} is $3^{x} \ln (3)$. Generalizing, we see that

$$
\left(a^{x}\right)^{\prime}=a^{x} \ln (a)
$$

2. Find the instantaneous rate of change of $f(x)$ at $x=1$, if

$$
f(x)=\frac{\sin \left(x^{2}-1\right)}{x-2}
$$

Solution:

The instantaneous rate of change of f at $x=1$ is precisely $f^{\prime}(1)$. Thus, we first find $f^{\prime}(x)$ and then plug in $x=1$.
We start with the quotient rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-2)\left(\sin \left(x^{2}-1\right)\right)^{\prime}-\sin \left(x^{2}-1\right)(x-2)^{\prime}}{(x-2)^{2}} \\
& =\frac{(x-2)\left(\sin \left(x^{2}-1\right)\right)^{\prime}-\sin \left(x^{2}-1\right)}{(x-2)^{2}}
\end{aligned}
$$

Now, we need to use the chain rule to find the derivatie of $\sin \left(x^{2}-1\right)$. Here, our inside function is $u=x^{2}-1$. Thus, we see that

$$
\begin{aligned}
\left(\sin \left(x^{2}-1\right)\right)^{\prime} & =(\sin (u))^{\prime} u^{\prime}(x)=\cos (u) \cdot\left(x^{2}-1\right)^{\prime} \\
& =\cos \left(x^{2}-1\right) \cdot(2 x) \\
& =2 x \cos \left(x^{2}-1\right)
\end{aligned}
$$

Plugging it back in, we see

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-2)\left(2 x \cos \left(x^{2}-1\right)\right)-\sin \left(x^{2}-1\right)}{(x-2)^{2}} \\
& =\frac{2 x(x-2) \cos \left(x^{2}-1\right)-\sin \left(x^{2}-1\right)}{(x-2)^{2}}
\end{aligned}
$$

Finally, we plug in $x=1$:

$$
\begin{aligned}
f^{\prime}(1) & =\frac{2 \cdot 1 \cdot(1-2) \cos \left(1^{2}-1\right)-\sin \left(1^{2}-1\right)}{(1-2)^{2}} \\
& =\frac{-2 \cos (0)-\sin (0)}{1^{2}}=\frac{-2}{1} \\
& =-2
\end{aligned}
$$

Part 2:

1. Let $f(x)=\cos \left(e^{x}-1\right)$.
(a) Find the slope of the tangent to $f(x)$ at the point $(0, f(0))$.

Solution:

By definition, the slope of the tangent to $f(x)$ at $(0, f(0))$ is $f^{\prime}(0)$. Thus, we need to differentiate $f(x)$ and then plug in 0 .
To differentiate, we use the chain rule. We have that $f(x)=\cos \left(e^{x}-\right.$ 1), which can be rewritten as $\cos (u)$, where $u=e^{x}-1$, which is our inside function. Thus,

$$
\begin{aligned}
f^{\prime}(x) & =(\cos (u))^{\prime} u^{\prime}(x)=(-\sin (u))\left(e^{x}-1\right)^{\prime} \\
& =-\sin \left(e^{x}-1\right) e^{x}
\end{aligned}
$$

Therefore,

$$
f^{\prime}(0)=-\sin \left(e^{0}-1\right) e^{0}=-\sin (1-1) \cdot 1=-\sin (0) \cdot 1=0
$$

Thus, the slope of the tangent to $f(x)$ at $(0, f(0))$ is 0 .
(b) Use the result from part (a) to calculate

$$
\lim _{h \rightarrow 0} \frac{\cos \left(e^{h}-1\right)-1}{h}
$$

Hint: What geometric quantity does the above limit represent for the graph $y=\cos \left(e^{x}-1\right)$?

Solution:

A little bit of thought shows that

$$
\frac{\cos \left(e^{h}-1\right)-1}{h}
$$

is the slope of the secant line connecting $(0,1)$ and $\left(h, \cos \left(e^{h}-1\right)\right)$. Note that if $f(x)=\cos \left(e^{x}-1\right)$, then these two points are $(0, f(0))$ and $(h, f(h))$. Here's a picture of this secant line:

We're taking the limit as h approaches 0 : therefore, the secant line approaches the tangent line at $(0,1)$. This means that

$$
\lim _{h \rightarrow 0} \frac{\cos \left(e^{h}-1\right)-1}{h}=\text { Slope of tangent to } y=\cos \left(e^{x}-1\right) \text { at }(0,1)
$$

But we already calculated the above quantity in (a), since the answer to part (a) was indeed the slope of the tangent line to $y=\cos \left(e^{x}-1\right)$
at $(0, f(0))$. Thus, the answer to part (b) is the same as to part (a): we have that

$$
\lim _{h \rightarrow 0} \frac{\cos \left(e^{h}-1\right)-1}{h}=0
$$

Note: Another way to do this is to remember the formula

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

We see that if $f(x)=\cos \left(e^{x}-1\right)$, and $x=0$, then plugging in:

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos \left(e^{h}-1\right)-1}{h}
\end{aligned}
$$

Thus, we would again be able to conclude that the answer to part (b) is the same as to part (a).

