In-Class Work Solutions for February 8th

Part 1:

1. Using the same kind of geometric reasoning we did in class, specify what the following quantities mean. (For example, the answer could be "the slope of the secant line connecting $(2, f(2))$ to $(3, f(3)) ")$.
If your answer is the slope of a tangent line, make sure to also express it as a derivative!
(a)

$$
\frac{f(3+r)-f(3)}{r}
$$

where $r=2$.

Solution:

We can start by plugging in $r=2$. We get the expression

$$
\frac{f(5)-f(3)}{2}
$$

Rearranging, we see that this is equal to $\frac{f(5)-f(3)}{5-3}$, which looks suspiciously like the formula for slope. Indeed, this quantity is equal to the slope of the secant connecting $(3, f(3))$ and $(5, f(5))$.
Here's a picture reflecting what's going on. Note that the shape of the curve $y=f(x)$ doesn't matter at all for these questions - we're trying to visually represent what's going on for a general function $f(x)$.

As we can see from the picture, the rise for this secant line is $f(5)-$ $f(3)$, while the run is $5-3=2$. Thus, its slope is precisely the intended expression.
(b)

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}
$$

Solution:

Let us first consider the quantity inside the limit, which is $\frac{f(1+h)-f(1)}{h}$. This is the slope of the secant line connecting $(1, f(1))$ to $(1+h, f(1+$ $h)$). Here's a picture of that line (for some value of h - obviously this line varies with h):

Now, we need to take the limit as $h \rightarrow 0$. This means we let h get smaller and smaller. Here's a picture of the secant line for a smaller value of h :

As h gets smaller, we see that the two points get closer and closer together. Therefore, the secant line gets closer and closer to the tangent line at $(1, f(1))$. Hence, the limit of the slopes of the secants as $h \rightarrow 0$ is precisely the slope of the tangent.

Here's a picture of that line:

Thus, the answer is

$$
\text { the slope of the tangent line at }(1, f(1))
$$

This quantity is also known as $f^{\prime}(1)$.
(c)

$$
\lim _{x \rightarrow 1} \frac{f(2+x)-f(2)}{x}
$$

Careful: this one is tricky! Make sure to draw the picture.

Solution:

Here, we're again taking a limit of slopes of secants: in this question, the secants under discussion connect $(2, f(2))$ and $(2+x, f(2+x))$. Here's a picture of such a secant:

Since we're letting x approach 1 , reasoning much like in part (b), we see that the secant lines get closer and closer to the secant line connecting $(2, f(2))$ and $(3, f(3))$. Thus, the slopes get closer to that slope as well, so the answer is

$$
\text { the slope of the secant line connecting }(2, f(2)) \text { and }(3, f(3))
$$

Here's a picture of that line:

Part 2:

1. Assume that the tangent line to the curve $y=f(x)$ at $(1,1)$ goes through the point $(2,5)$. Calculate $f^{\prime}(1)$.

Solution:

This question is easiest starting with a picture:

We're looking for $f^{\prime}(1)$, which is by definition the slope of the tangent to $y=f(x)$ at the point $(1, f(1))$. Since we know that the curve contains the point $(1,1)$, this means we're looking for the slope of the tangent line at $(1,1)$. But we're told that this tangent line goes through the point $(2,5)$. Summing up the logic, here's what we get:

$$
\begin{aligned}
f^{\prime}(1) & =\text { slope of the tangent at }(1, f(1)) \\
& =\text { slope of the tangent at }(1,1) \\
& =\frac{5-1}{2-1}=4
\end{aligned}
$$

Therefore, $f^{\prime}(1)=4$.
2. Let $f(t)$ denote a person's height at age t, measured in years. Would you expect $f^{\prime}(2)$ to be positive or negative, and why? How about $f^{\prime}(70)$?

Solution:

We know that $f^{\prime}(t)$ is the rate of change of the function at time t. This means that $f^{\prime}(a)$ is positive if $f(t)$ is increasing around time a, and $f^{\prime}(a)$ is negative if $f(t)$ is decreasing around time a.
At age 2, people's height is generally increasing. Thus, we see that $f(t)$ is increasing around time 2 , and therefore we expect $f^{\prime}(2)$ to be positive:

$$
f^{\prime}(2)>0
$$

At age 70, people's height is expected to decrease. Thus, $f^{\prime}(70)$ should be negative:

$$
f^{\prime}(70)<0
$$

(If you believe that people's height isn't changing at all at age 70, then you could argue that $f^{\prime}(70)=0$. Either answer is fine with a good justification!)
Note: If this logic is difficult, try to draw a graph of $f(t)$ - that is, of a person's age versus time - and take a look at the slopes!

