In-Class Questions for March 19th

1. A point is moving along the curve $2^{x+y}=x^{2}$. When the point is at $(1,-1)$, the x-coordinate is moving to the left at the speed of 2 units per second. What is the speed of the y-coordinate, and which direction is it going? (You may need a calculator to find the direction.)

Note: You don't really need this, but here's an approximate sketch of the curve:

Solution:

Let us follow the algorithm.

1. Draw a diagram:

2. Label the variables: in the above picture, $x(t)$ is the x-coordinate of the point at time t, and $y(t)$ is the y-coordinate of the point at time t. (We label these as functions of t since they are all changing with time.)
3. Write down information given using derivatives: we are given that when the point is at $(1,-1)$, the x-coordinate is moving to the left at the rate of 2 units per second. The rate of change of the x-coordinate is by definition $x^{\prime}(t)$; since it's moving to the left, we know that it's decreasing. Thus, we're given that

$$
x^{\prime}(t)=-2 \text { when }(x(t), y(t))=(1,-1)
$$

4. Write down what we want to find using derivatives: we're looking for how quickly the y-coordinate is changing when the point is at $(1,-1)$. By definition, the rate of change of the y-coordinate is $y^{\prime}(t)$; therefore, we're asked

$$
\text { What is } y^{\prime}(t) \text { when }(x(t), y(t))=(1,-1) ?
$$

5. Find a relationship: By definition, if a point $(x(t), y(t))$ is on the curve $2^{x+y}=x^{2}$, then it satisfies the equation of the curve. Therefore, the relationship is very easy: it's just

$$
2^{x(t)+y(t)}=x(t)^{2}
$$

6. Differentiate both sides of relationship with respect to t : differentiating, (not forgetting the chain rule), we get

$$
\begin{aligned}
\left(2^{x(t)+y(t)}\right)^{\prime} & =\left(x(t)^{2}\right)^{\prime} \\
\Rightarrow \ln (2) 2^{x(t)+y(t)}\left(x^{\prime}(t)+y^{\prime}(t)\right) & =2 x(t) x^{\prime}(t)
\end{aligned}
$$

Now, to solve for $y^{\prime}(t)$ (which is our required quantity), we need to first expand things out, then put all the terms with $y^{\prime}(t)$ on one side and all the other terms on the other side:

$$
\begin{aligned}
\ln (2) 2^{x(t)+y(t)} x^{\prime}(t)+\ln (2) 2^{x(t)+y(t)} y^{\prime}(t) & =2 x(t) x^{\prime}(t) \\
\Rightarrow \ln (2) 2^{x(t)+y(t)} y^{\prime}(t) & =2 x(t) x^{\prime}(t)-\ln (2) 2^{x(t)+y(t)} x^{\prime}(t) \\
\Rightarrow y^{\prime}(t) & =\frac{2 x(t) x^{\prime}(t)-\ln (2) 2^{x(t)+y(t)} x^{\prime}(t)}{2^{x(t)+y(t)} \ln (2)}
\end{aligned}
$$

7. Substitute information given: we're asked about $y^{\prime}(t)$ when $(x(t), y(t))=$ $(1,-1)$. We also know that $x^{\prime}(t)$ at this point is -2 . Plugging all this into the above equation, we get that

$$
\begin{aligned}
y^{\prime}(t) & =\frac{2 x(t) x^{\prime}(t)-\ln (2) 2^{x(t)+y(t)} x^{\prime}(t)}{2^{x(t)+y(t)} \ln (2)} \\
& =\frac{2 \cdot 1 \cdot(-2)-\ln (2) \cdot 2^{1+(-1)} \cdot(-2)}{2^{1+(-1)} \ln (2)} \\
& =\frac{-4+2 \ln (2)}{\ln (2)} \approx-3.7708
\end{aligned}
$$

Note that the answer is negative, and therefore the y-coordinate is decreasing. (This should also be clear from the graph!)
Therefore, the final answer is that when the point is at $(1,-1)$, the y-coordinate is decreasing at the rate of

$$
\frac{4-2 \ln (2)}{\ln (2)} \approx 3.7708 \text { units per second. }
$$

2. Two ships A and B start off at the same point at noon. Ship A travels north at 30 miles/hour while ship B travels west at 40 miles/hour. How fast is the distance between the ships increasing at 2 pm ?

Solution:

Let us follow the algorithm.

1. Draw a diagram:

2. Label the variables: in the above picture, $A(t)$ is the distance ship A has travelled after time t, and $B(t)$ is the distance ship B has travelled after time $t . D(t)$ is the distance between the ships at time t.
3. Write down information given using derivatives: we are given that ship A travels at 30 miles per hour, and ship B travels at 40 miles per hour. Therefore, we're given that

$$
\begin{aligned}
& A^{\prime}(t)=30 \\
& B^{\prime}(t)=40
\end{aligned}
$$

4. Write down what we want to find using derivatives: we're looking for how quickly the distance is changing at 2 pm . Thefore, the quesiton is:

What is $D^{\prime}(t)$ at 2 pm ?
5. Find a relationship: it's clear that above we have a right triangle. Therefore, Pythagoras gives us that

$$
A(t)^{2}+B(t)^{2}=D(t)^{2}
$$

6. Differentiate both sides of relationship with respect to t : differentiating, (not forgetting the chain rule), we get

$$
\begin{aligned}
\left(A(t)^{2}+B(t)^{2}\right)^{\prime} & =\left(D(t)^{2}\right)^{\prime} \\
\Rightarrow 2 A(t) A^{\prime}(t)+2 B(t) B^{\prime}(t) & =2 D(t) D^{\prime}(t)
\end{aligned}
$$

Now, to solve for $D^{\prime}(t)$ (which is our required quantity), we need to first expand things out, we simply divide, getting:

$$
\begin{aligned}
D^{\prime}(t) & =\frac{2 A(t) A^{\prime}(t)+2 B(t) B^{\prime}(t)}{2 D(t)} \\
& =\frac{A(t) A^{\prime}(t)+B(t) B^{\prime}(t)}{D(t)}
\end{aligned}
$$

7. Substitute information given: we're asked about $D^{\prime}(t)$ at 2 pm . Since ship A travels at 30 miles per hour, at $2 \mathrm{pm}, A(t)=2 \cdot 30=60$ miles, and similarly $B(t)=2 \cdot 40=80$ miles. Furthermore, using the relationship between the variables, we see that at 2 pm ,

$$
\begin{aligned}
D(t)^{2} & =A(t)^{2}+B(t)^{2}=60^{2}+80^{2} \\
& =3600+6400=10,000 \\
\Rightarrow D(t) & =\sqrt{10,000}=100
\end{aligned}
$$

Therefore, plugging in, we have that

$$
\begin{aligned}
D^{\prime}(t) & =\frac{A(t) A^{\prime}(t)+B(t) B^{\prime}(t)}{D(t)} \\
& =\frac{60 \cdot 30+80 \cdot 40}{100} \\
& =\frac{1800+3200}{100}=\frac{5000}{100} \\
& =50
\end{aligned}
$$

Therefore, the final answer is that
At 2 pm , the distance is increasing at 50 miles per hour.

