In-Class Work Solutions for March 23rd

Part 1:

1. Consider the curve $y+e^{x y}=x^{2}$, and say that we're currently at the point $(1,0)$. Estimate how much the y-coordinate will change if the x-coordinate increases by 0.02 .

Solution:

Let us find the equation of the tangent line at the point $(1,0)$. Using implicit differentiation,

$$
\begin{aligned}
\left(y+e^{x y}\right)^{\prime} & =\left(x^{2}\right)^{\prime} \\
\Rightarrow y^{\prime}+(x y)^{\prime} e^{x y} & =2 x \\
\Rightarrow y^{\prime}+\left(x y^{\prime}+y\right) e^{x y} & =2 x
\end{aligned}
$$

To solve, we expand out and then put all the terms with a y^{\prime} on one side and all the remaining terms on the other side:

$$
\begin{aligned}
y^{\prime}+x y^{\prime} e^{x y}+y e^{x y} & =2 x \\
\Rightarrow y^{\prime}+x y^{\prime} e^{x y} & =2 x-y e^{x y} \\
\Rightarrow y^{\prime}\left(1+x e^{x y}\right) & =2 x-y e^{x y} \\
\Rightarrow y^{\prime} & =\frac{2 x-y e^{x y}}{1+x e^{x y}}
\end{aligned}
$$

Therefore, the tangent line at $(1,0)$ has the following properties:

$$
\begin{aligned}
& \text { Point on line }=(1,0) \\
& \text { Slope of line }=y^{\prime}(1,0)=\frac{2 \cdot 1-0 \cdot e^{0}}{1+1 \cdot e^{0}}=\frac{2}{2}=1
\end{aligned}
$$

Using point-slope, the equation of the line is

$$
\begin{aligned}
y-0 & =1 \cdot(x-1) \\
\Rightarrow y & =x-1
\end{aligned}
$$

Therefore, the linearization at $(1,0)$ is $L(x)=x-1$. If the x-coordinate increases by 0.02 , it becomes 1.02 ; therefore, the corresponding y-coordinate will be very close to $L(1.02)$. Thus, we see that

$$
y \text {-coordinate at } 1.02 \approx L(1.02)=1.02-1=0.02
$$

Since the y-coordinate started off being 0 , the increase in y-coordinate is $0.02-0=0.02$. Therefore, the conclusion is that if the x-coordinate increases by about 0.02 ,

The y-coordinate increases by about 0.02 .
2. Find the linearization of $f(x)$ at $x=3$ if $f(3)=4$ and

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=2
$$

Hint: Don't forget the limit definition of the derivative!

Solution:

By the limit definition of the derivative,

$$
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}
$$

Therefore, what we're given is that $f^{\prime}(3)=2$. To find the equation of the line at $x=3$, we have that

$$
\begin{aligned}
\text { Point on line } & =(3, f(3))=(3,4) \\
\text { Slope of line } & =f^{\prime}(3)=2
\end{aligned}
$$

Plugging these in, the equation of the line at $(3, f(3))$ is

$$
y-4=2(x-3)
$$

Simplifying, $y=2(x-3)+4=2 x-6+4=2 x-2$. Therefore, we conclude that at $x=3$,

$$
L(x)=2 x-2
$$

Part 2:

1. Frank comes home at 1 pm and turns on the heat. The following is a table of values of the temperature $T(t)$ in his house at various times:

t	1 pm	$1: 15 \mathrm{pm}$	$1: 19 \mathrm{pm}$	$1: 30 \mathrm{pm}$
$T(t)$	60°	63°	65°	69°

Estimate the temperature of the house at $1: 18 \mathrm{pm}$.

Solution:

To simplify notation a little, let's say that
$T(x)=$ the temperature of Frank's house x minutes after 1 pm
That is, $T(0)=60, T(15)=63$, etc. Using this notation, we need to estimate $T(18)$. Since we're given $T(19)$, we will use the linearization at $x=19$. We have that

$$
\begin{aligned}
\text { Point on line } & =(19, T(19))=(19,65) \\
\text { Slope of line } & =T^{\prime}(19)=?
\end{aligned}
$$

We need to estimate the slope of the line at $(19,65)$. Since we do not have a formula for $T(x)$, we will estimate this using the slope of a secant. The closest x-value to 19 at which we're given the temperature is 15 ; therefore, we estimate that

$$
T^{\prime}(19) \approx \frac{T(19)-T(15)}{19-15}=\frac{65-63}{4}=\frac{1}{2}
$$

Therefore, using point-slope, we see that the tangent line has approximately the following formula:

$$
\begin{aligned}
y-65 & =\frac{1}{2}(x-19) \\
\Rightarrow y & =65+\frac{1}{2}(x-19)
\end{aligned}
$$

Thus,

$$
L(x) \approx 65+\frac{1}{2}(x-19)
$$

Now, to estimate $T(18)$, we plug in 18 into the above formula. That is,

$$
\begin{aligned}
T(18) & \approx L(18) \approx 65+\frac{1}{2}(18-19) \\
& =65-\frac{1}{2}=64.5
\end{aligned}
$$

Thus,
The temperature at $1: 18 \mathrm{pm}$ is about 64.5°.
2. Draw a picture to explain whether estimating $\sqrt{3.9}$ with a linearization at $x=4$ would result in an overestimate or an underestimate. (You do not actually have to do the calculation estimating it.)

Solution:

Let $f(x)=\sqrt{x}$. To estimate $\sqrt{3.9}$, we find the linearization $L(x)$ of $f(x)$ at $x=4$, and then we plug in 3.9 into $L(x)$. By definition, $L(x)$ is the function whose graph is the the tangent line to $y=f(x)$ at $(4, f(4))$: in this case, it's the tangent line to $y=\sqrt{x}$ at $(4,2)$. Here's the picture of both $y=\sqrt{x}$ and this tangent line:

It should be clear from the picture that the y-values taken on by $L(x)$ are bigger than the y-values taken on by \sqrt{x} (this is because of the shape of the graph.) Thus, $L(3.9) \geq \sqrt{3.9}$ and therefore

The estimate will be an overestimate.

