In-Class Questions for March 26th

1. Let $f(x)$ be given in the following picture:

(a) Find the absolute minimum and absolute maximum values of $f(x)$ on $[-3,3.5]$, as well as the values of x at which they are attained.
(b) Find the values of x at which the local minimums are attained.
(c) Find the values of x at which the local maximums are attained.
(d) For each value of x in parts (b) and (c), state whether $f^{\prime}(x)$ is 0 or doesn't exist.
2. Find all the critical values of $f(x)=(x+1)^{1 / 3}(x-2)^{2 / 3}$.
(1) (a) Fid the absolute minimum and absolute maximum values of $f(x)$) on $[-3,3.5]$, as well as the V alnes of x at which they are attained.
Abs. Min: $-1 a t=1$ Abs. Max: 2.5 at $x=3$
(b) Find the Vanes of x at which the loan minimus are attained.

$$
x=1
$$

(c) Find the values of x at witch the local maximums are attained.

$$
\begin{aligned}
& x=-n \\
& x=-1 \\
& x=3
\end{aligned}
$$

(d) For each vara of x in parts (b) and (c), store whether $f^{\prime}(x)$ is 0 or DN.E.

$$
\left[\begin{array}{l}
x=1 ; f^{\prime}(x)=0 \\
x=-2 ; f^{\prime}(x)=\text { DNE } \\
x=-1 ; f^{\prime}(x)=\text { NE } \\
x=3 ; f^{\prime}(x)=0
\end{array}\right]
$$

(1) Find wite coition values of $f(x)=(x+1)^{1 / 3}(x-2)^{2 / 3}$.

- Product Rule:

$$
\begin{aligned}
f(x) & =(x+1)^{1 / 3}(x-2)^{2 / 3} \\
f^{\prime}(x) & =(x+1)^{1 / 3}\left[(x-2)^{2 / 3}\right]^{1}+(x-2)^{2 / 3}\left[(x+1)^{1 / 3}\right]^{1} \\
& =(x+1)^{1 / 3}\left(\frac{2}{3}\right)(x-2)^{-1 / 3}+(x-2)^{2 / 3}\left(\frac{1}{3}\right)(x+1)^{-2 / 3}
\end{aligned}
$$

Common denominator ad Simplify or

$$
\begin{aligned}
& =(x+1)^{1 / 3}\left(\frac{2}{3}\right)(x-2)^{-1 / 3}+(x-2) \\
& =\frac{2(x+1)^{1 / 3}}{3(x-2)^{1 / 3}}+\frac{(x-2)^{2 / 3}}{3(x+1)^{2 / 3}} \\
& =\frac{2(x+1)^{1 / 3}}{(x-1)^{1 / 3}} \cdot\left(\frac{(x+1)^{2 / 3}}{(x+1)^{2 / 3}}\right)+\frac{(x-2)^{1 / 3}}{3(x+1)^{2 / 3}} \cdot\left(\frac{(x-2)^{1 / 3}}{(x-2)^{1 / 3}}\right)
\end{aligned}
$$

Lexpres numerator) your critical vanes will not correspond
to the graph produced
(collect terms) by the fraction.

- Send resative exponents to the denomintar.
but it's all algebra. $=\frac{2(x+1)^{1 / 3}}{3(x-2)^{1 / 3}}+\frac{(x-2)}{3(x+1)^{2 / 3}}(x-2)^{2 / 3} \cdot\left((x-2)^{1 / 3}\right)$ (common denokintar)
Try to obtain a

$$
=\frac{2 x+2+x-2}{3(x-2)^{1 / 3}(x+1)^{2 / 3}}
$$

(simplify)

$$
=\frac{3 x}{b(x-2)^{1 / 3}(x+1)^{2 / 3}}
$$

(dore.)

