In-Class Work Solutions for March 5th

Part 1:

1. (a) Calculate the derivative of $\log _{2}(x)$ using the method just used in class.

Solution:

$\log _{2}(x)$ is inverse function of 2^{x}. Therefore, following the steps, we get:

$$
\begin{aligned}
y & =\log _{2}(x) \\
\Rightarrow 2^{y} & =2^{\log _{2}(x)}=x
\end{aligned}
$$

Now, we take the derivative of both sides with respect to x; we have to use implicit differentiation for 2^{y}. Don't forget, the derivative of 2^{x} is $2^{x} \ln (2)$.

$$
\begin{aligned}
\left(2^{y}\right)^{\prime} & =(x)^{\prime} \\
\Rightarrow 2^{y} \ln (2) y^{\prime} & =1
\end{aligned}
$$

Now, solving for y^{\prime} we get

$$
y^{\prime}=\frac{1}{2^{y} \ln (2)}
$$

Finally, substituting the expression $y=\log _{2}(x)$, we get

$$
y^{\prime}=\frac{1}{2^{\log _{2}(x)} \ln (2)}=\frac{1}{x \ln (2)}
$$

(b) Formulate a rule for the derivative of $\log _{a}(x)$.

Solution:

Generalizing from part (a), we see that

$$
\log _{a}(x)^{\prime}=\frac{1}{x \ln (a)}
$$

2. Calculate $f^{\prime}(x)$, if

$$
f(x)=\ln \left(1+4 x^{2}\right)+\tan ^{-1}(2 x)
$$

Simplify your answer into a single fraction.

Solution:

Here, we have to use the chain rule separately on the two pieces:

$$
\begin{aligned}
f^{\prime}(x) & =\left(\ln \left(1+4 x^{2}\right)+\tan ^{-1}(2 x)\right)^{\prime} \\
& =\left(\ln \left(1+4 x^{2}\right)\right)^{\prime}+\left(\tan ^{-1}(2 x)\right)^{\prime} \\
& =\frac{1}{1+4 x^{2}} \cdot\left(1+4 x^{2}\right)^{\prime}+\frac{1}{1+(2 x)^{2}} \cdot(2 x)^{\prime} \\
& =\frac{8 x}{1+4 x^{2}}+\frac{2}{1+4 x^{2}}=\frac{8 x+2}{1+4 x^{2}}
\end{aligned}
$$

3. Calculate the derivatives of the following functions using logarithmic differentiation. If it can be done without logarithmic differentiation, check your answer by differentiating in the normal way.
(a) $f(x)=e^{x^{2}}$.

Solution:

Using logarithmic differentation, we start by writing

$$
y=e^{x^{2}}
$$

We then take \ln of both sides and simplify:

$$
\ln (y)=\ln \left(e^{x^{2}}\right)=x^{2}
$$

Now, differentiate both sides with respect to x; we need to use implicit differentiation for $\ln (y)$:

$$
\begin{aligned}
& (\ln (y))^{\prime}=\left(x^{2}\right)^{\prime} \\
& \Rightarrow \frac{1}{y} y^{\prime}=2 x
\end{aligned}
$$

Finally, solving for y^{\prime} and substituting in the formula for y :

$$
y^{\prime}=2 x y=2 x e^{x^{2}}
$$

Now, note that this question can also be quickly done with chain rule:

$$
\left(e^{x^{2}}\right)^{\prime}=\left(e^{x^{2}}\right) \cdot\left(x^{2}\right)^{\prime}=e^{x^{2}} \cdot 2 x=2 x e^{x^{2}}
$$

Clearly, we get the same answer either way!
(b) $f(x)=x^{2 \sin (x)}$.

Solution:

Following the exactly same algorithm as above:

$$
\begin{aligned}
y & =x^{2 \sin (x)} \\
\Rightarrow \ln (y) & =\ln \left(x^{2 \sin (x)}\right)=2 \sin (x) \ln (x)
\end{aligned}
$$

Now, differentiating both sides with respect to x :

$$
\begin{aligned}
(\ln (y))^{\prime} & =(2 \sin (x) \ln (x))^{\prime} \\
\Rightarrow \frac{1}{y} y^{\prime} & =2 \sin (x)(\ln (x))^{\prime}+2(\sin (x))^{\prime} \ln (x) \\
& =2 \frac{\sin (x)}{x}+2 \cos (x) \ln (x)
\end{aligned}
$$

Solving for y^{\prime}, and substituting the expression for y, we get

$$
\begin{aligned}
y^{\prime} & =y\left(2 \frac{\sin (x)}{x}+2 \cos (x) \ln (x)\right) \\
& =x^{2 \sin (x)}\left(2 \frac{\sin (x)}{x}+2 \cos (x) \ln (x)\right)
\end{aligned}
$$

