\qquad
02/17/2012
Bormashenko
TA session: \qquad

Show your work for all the problems. Good luck!

(1) (a) [5 pts] Write the following expression as a single logarithm. Make sure to simplify as much as possible!

$$
3 \log _{2}(3)-\frac{3}{2} \log _{2} 4+\log _{2}\left(\frac{8}{25}\right)+2 \log _{2} 5
$$

Solution:

Let us try to simplify all this into a single logarithm. Using log rules, we get

$$
\begin{aligned}
3 \log _{2}(3)-\frac{3}{2} \log _{2} 4 & +\log _{2}\left(\frac{8}{25}\right)+2 \log _{2} 5 \\
& =\log _{2}\left(3^{3}\right)-\log _{2}\left(4^{3 / 2}\right)+\log _{2}\left(\frac{8}{25}\right)+\log _{2}\left(5^{2}\right) \\
& =\log _{2}(27)-\log _{2}(8)+\log _{2}\left(\frac{8}{25}\right)+\log _{2}(25)
\end{aligned}
$$

using the fact that $4^{3 / 2}=\left(4^{1 / 2}\right)^{3}=2^{3}=8$. Continuing, we get

$$
\begin{aligned}
\log _{2}\left(\frac{27 \cdot 8 / 25 \cdot 25}{8}\right) & =\log _{2}\left(\frac{27 \cdot 8 \cdot 25}{8 \cdot 25}\right) \\
& =\log _{2}(27)
\end{aligned}
$$

(b) [5 pts] Let $f(x)$ be defined as

$$
f(x)=\frac{2 x}{x+3}
$$

Find a formula for $f^{-1}(x)$.

Solution:

We set up the equation $y=f(x)$, and solve for x :

$$
\begin{aligned}
y & =\frac{2 x}{x+3} \\
\Rightarrow(x+3) y & =2 x \\
\Rightarrow x y+3 y & =2 x \\
\Rightarrow 3 y & =2 x-x y=x(2-y) \\
\Rightarrow x & =\frac{3 y}{2-y}
\end{aligned}
$$

Now, we swap x and y, getting that

$$
y=\frac{3 x}{2-x}
$$

Therefore, $f^{-1}(x)=\frac{3 x}{2-x}$.
(2) Let $f(x)$ be the following function:

$$
f(x)= \begin{cases}2 x+1 & x<0 \\ 2 & x=0 \\ x^{2}+x+1 & x>0\end{cases}
$$

(a) [5 pts] Find all values of a for which $\lim _{x \rightarrow a} f(x)$ exists. Write your answer in interval notation.

Solution:

First note that since the two 'pieces' of $f(x)$ are polynomials, $\lim _{x \rightarrow a} f(x)$ exists for all $a \neq 0$. Therefore, we just need to check at $x=0$. Since it's defined separately on the two sides of 0 , we consider the left-hand and right-hand limits:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}(2 x+1)=2 \cdot 0+1=1 \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left(x^{2}+x+1\right)=0^{2}+0+1=1
\end{aligned}
$$

Since the two limits match, we see that

$$
\lim _{x \rightarrow 0} f(x)=1
$$

Thus, we see that $\lim _{x \rightarrow a} f(x)$ exists for all a. Thus, the answer is $(-\infty, \infty)$.
(b) [5 pts] Find all values of a at which the function $f(x)$ is continuous; make sure to use the definition of continuity in your solution for full credit. Write your answer in interval notation.

Solution:

Again, since the two pieces are polynomials, $f(x)$ is continuous at all $a \neq 0$. Therefore, we only have to check $a=0$. Using the arguments from part (a), we see that

$$
\lim _{x \rightarrow 0} f(x)=1
$$

Furthermore, we see from the definition that $f(0)=2$. Thus, we see that

$$
\lim _{x \rightarrow 0} f(x) \neq 2
$$

This means that $f(x)$ isn't continuous at 0 . Therefore, $f(x)$ is continuous for all a in $(-\infty, 0) \cup(0, \infty)$.
(3) Let $f(x)=\frac{x^{2}-1}{x^{2}-3 x+2}$.
(a) [5 pts] Find all the horizontal asymptotes of $f(x)$. Make sure to show all your work.

Solution:

To find the horizontal asymptotes of $f(x)$, we take the limit of $f(x)$ as x approaches ∞ and $-\infty$. The way to do this is to divide top and bottom by the highest power of x in the denominator:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}-3 x+2}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}\left(x^{2}-1\right)}{\frac{1}{x^{2}}\left(x^{2}-3 x+2\right)} \\
& =\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x^{2}}}{1-\frac{3}{x}+\frac{2}{x^{2}}}=\frac{1-0}{1-0+0}=1
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{x^{2}-1}{x^{2}-3 x+2}=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x^{2}}}{1-\frac{3}{x}+\frac{2}{x^{2}}} \\
& =\frac{1-0}{1-0+0}=1
\end{aligned}
$$

Therefore, the only horizontal asymptote is $y=1$. (Note that you do have to check both ∞ and $-\infty$: if the two limits were different, then we'd have two different asymptotes!)
(b) [5 pts] Find all the vertical asymptotes of $f(x)$. Make sure to show all your work.

Solution:

Recall that vertical asymptotes occur when either the denominator is 0 or the numerator blows up. Furthermore, if both denominator and numerator are 0 , we have to do more checking. Here, the numerator never blows up. Thus, set denominator to 0 :

$$
\begin{aligned}
x^{2}-3 x+2 & =0 \\
\Rightarrow(x-2)(x-1) & =0
\end{aligned}
$$

Thus, the only possibilities are $x=1$ and $x=2$. When $x=2$, the numerator is $2^{2}-1=3$, so $x=2$ is indeed an asymptote. When $x=1$, the numerator is $1^{2}-1=0$, so we need to check. We see that

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{(x-1)(x-2)} \\
& =\lim _{x \rightarrow 1} \frac{x+1}{x-2}=\frac{2}{-1}=-2
\end{aligned}
$$

Since the limit at 1 is a number, that means that the function is not going off to ∞ around $x=1$. This means $x=1$ isn't an asymptote. Therefore, the only vertical asymptote is $x=2$.
(4) Do the following questions:
(a) [5 pts] Calculate the following limit:

$$
\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)
$$

Show every step in your work. Justify any calculation that requires it.

Solution:

Here, we first simplify the expression as a single fraction, and then try to evaluate the limit. (Trying to plug in right now results in expressions like $\infty-\infty$, which are completely meaningless.)
Working it out,

$$
\begin{aligned}
\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right) & =\lim _{x \rightarrow 1}\left(\frac{x+1}{(x-1)(x+1)}-\frac{2}{x^{2}-1}\right) \\
& =\lim _{x \rightarrow 1}\left(\frac{x+1}{x^{2}-1}-\frac{2}{x^{2}-1}\right) \\
& =\lim _{x \rightarrow 1}\left(\frac{x+1-2}{x^{2}-1}\right)=\lim _{x \rightarrow 1}\left(\frac{x-1}{(x-1)(x+1)}\right) \\
& =\lim _{x \rightarrow 1}\left(\frac{1}{x+1}\right)=\frac{1}{2}
\end{aligned}
$$

(b) [5 pts] Use the rules learned in class so far to calculate the derivative of the following function:

$$
f(x)=\frac{x-\sqrt[3]{x}}{x^{2}}+\frac{4}{\sqrt{x}}+\pi-2 e^{x-1}
$$

Solution:

Here, we need to rewrite everything as a sum of powers of x and exponential functions. Accordingly,

$$
\begin{aligned}
f(x) & =\frac{x}{x^{2}}-\frac{\sqrt[3]{x}}{x^{2}}+\frac{4}{\sqrt{x}}+\pi-2 e^{x-1} \\
& =x^{-1}-\frac{x^{1 / 3}}{x^{2}}+4 x^{-1 / 2}+\pi-2 e^{-1} e^{x} \\
& =x^{-1}-x^{-5 / 3}+4 x^{-1 / 2}+\pi-2 e^{-1} e^{x}
\end{aligned}
$$

Therefore, differentiating:

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{-1}-x^{-5 / 3}+4 x^{-1 / 2}+\pi-2 e^{-1} e^{x}\right)^{\prime} \\
& =\left(x^{-1}\right)^{\prime}-\left(x^{-5 / 3}\right)^{\prime}+4\left(x^{-1 / 2}\right)^{\prime}-2 e^{-1}\left(e^{x}\right)^{\prime} \\
& =x^{-2}-\left(-\frac{5}{3}\right) x^{-8 / 3}+4 \cdot\left(-\frac{1}{2}\right) x^{-3 / 2}-2 e^{-1} e^{x} \\
& =x^{-2}+\frac{5}{3} x^{-8 / 3}-2 x^{-3 / 2}-2 e^{x-1}
\end{aligned}
$$

(5) [10 pts] For the $f(x)$ in the following picture, graph $f^{\prime}(x)$ on the empty axes below. Make sure to estimate the values of $f^{\prime}(x)$ carefully, and also to record whether $f^{\prime}(x)$ is increasing or decreasing on the graph. Also, write a couple of sentences about how you graphed what's going on at $x=-0.5$.

Solution:

Here is the picture of $f^{\prime}(x)$:

To figure out what's going on at $x=-0.5$, we need to see what's happening to the derivative as x approaches -0.5 from the left, and x approaches -0.5 from the right. We see that to the left of -0.5 , the tangent lines to the graph are getting arbitrarily steep, and since the slopes are negative, $f^{\prime}(x)$ is approaching $-\infty$. To the right of -0.5 , the tangent lines are also getting arbitrarily steep; however, since the slopes are positive, $f^{\prime}(x)$ is approaching ∞. This explains the presence of the asymptote $x=-0.5$ on the graph, as well as the behaviour of $f^{\prime}(x)$ near the asymptote.
(6) [7 pts] BONUS: Explain where the following equation comes from:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

For full points on this question, you must both provide a good picture, and a clear explanation of what's happening!

Solution:

Coming soon!

