\qquad
Show your work for all the problems. Good luck!
(1) (a) [5 pts] Solve for x if

$$
2^{x+3}=4^{3 x-1}
$$

(b) $[10 \mathrm{pts}]$ Let

$$
f(x)=\frac{e^{x}}{e^{x}+1}
$$

Find a formula for $f^{-1}(x)$, and make your answer as simple as possible by using logarithm rules.
(2) $[10 \mathrm{pts}]$ Let $f(x)$ be defined as follows:

$$
f(x)= \begin{cases}x & x \leq 0 \\ x^{2} & 0<x<1 \\ 1-x & 1 \leq x\end{cases}
$$

Which values of a is this function continuous at? State your answer in interval notation. Make sure to show all the appropriate limit calculations and justify continuity for all stated values of a !
(3) Calculate the following limits. You must show all your work to get credit. State if you're using continuity.
(a) $[5 \mathrm{pts}] \lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x}$
(b) [5 pts] $\lim _{x \rightarrow \infty} \frac{x^{2}+x+1}{2 x^{2}-x+3}$
(c) [5 pts] $\lim _{x \rightarrow 1^{-}} \frac{x+1}{x^{2}-3 x+2}$

Hint: You might want to factor the denominator first...
(4) (a) [10 pts] Let $f(x)$ be given in the following graph. Sketch the graph of $f^{\prime}(x)$ on the empty axes below. Make sure to estimate the values of $f^{\prime}(x)$ carefully, and also to record whether $f^{\prime}(x)$ is increasing or decreasing on the graph.

(b) [5 pts] Find $f^{\prime}(x)$, if

$$
f(x)=\frac{x^{2}-2 x}{3 x^{3}}+\frac{1}{2 \sqrt{x}}+e^{x-1}
$$

Use only the rules we have learned in class so far.

