\qquad
\qquad

Show your work for all the problems. Good luck!

(1) (a) [5 pts] Solve for x if

$$
2^{x+3}=4^{3 x-1}
$$

Solution:

Writing everything as a power of 2 ,

$$
2^{x+3}=\left(2^{2}\right)^{3 x-1}=2^{2(3 x-1)}=2^{6 x-2}
$$

using exponent rules and expanding things out.
To have powers of the same base be equal, the exponents have to be the same. Therefore,

$$
\begin{aligned}
x+3 & =6 x-2 \\
\Rightarrow 5 & =5 x \\
\Rightarrow x & =1
\end{aligned}
$$

Thus, the answer is $x=1$.
(b) $[10 \mathrm{pts}]$ Let

$$
f(x)=\frac{e^{x}}{e^{x}+1}
$$

Find a formula for $f^{-1}(x)$, and make your answer as simple as possible by using logarithm rules.

Solution:

Start by rewriting the equation as

$$
y=\frac{e^{x}}{e^{x}+1}
$$

Now, we need to solve for x in terms of y. We first solve for e^{x}. Beging by multiplying both sides by the denominator $e^{x}+1$:

$$
\begin{aligned}
\left(e^{x}+1\right) \times y & =\frac{e^{x}}{e^{x}+1} \times\left(e^{x}+1\right) \\
\Rightarrow\left(e^{x}+1\right) y & =e^{x} \\
\Rightarrow e^{x} y+y & =e^{x} \\
\Rightarrow e^{x} y-e^{x} & =-y \\
\Rightarrow e^{x}(y-1) & =-y \\
\Rightarrow e^{x} & =\frac{-y}{y-1}
\end{aligned}
$$

Now, taking \ln of both sides we get

$$
x=\ln \left(e^{x}\right)=\ln \left(\frac{-y}{y-1}\right)=\ln (-y)-\ln (y-1)
$$

Switching x and y, we see that the answer is $f^{-1}(x)=\ln (-x)-\ln (x-1)$. (If you made a different choice when solving for e^{x}, you would get $\ln (x)-\ln (1-x)$, which is the same thing.)
(2) [10 pts] Let $f(x)$ be defined as follows:

$$
f(x)= \begin{cases}x & x \leq 0 \\ x^{2} & 0<x<1 \\ 1-x & 1 \leq x\end{cases}
$$

Which values of a is this function continuous at? State your answer in interval notation. Make sure to show all the appropriate limit calculations and justify continuity for all stated values of a !

Solution:

As noted in class, I recommend starting this question by drawing a picture. While I will not do so in this soluion, you will the logic easier to follow if you sketch your own picture before reading it.
$f(x)$ is a piecewise function with three different "pieces." Each of this pieces is a polynomial: as a result, $f(x)$ is definitely continuous everywhere except where those pieces "connect." Thus, we only need to check whether $f(x)$ is continuous at 0 and 1 .

Checking $x=0$: By definition, $f(x)$ is continous at 0 if and only if

$$
f(0)=\lim _{x \rightarrow 0} f(x)
$$

This means that we need to check two things:
(a) Does $\lim _{x \rightarrow 0} f(x)$ exist?
(b) If the limit exists, does it equal to $f(0)$?

To check whether the limit exists, we check whether the right-hand and left-hand limit match. As is clear from the piecewise definition (and should be extra clear from the picture), $f(x)$ is defined to be x a little to the left of 0 , and is defined to be x^{2} a little to the right of 0 . Therefore,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}} x=0 \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{-}} x^{2}=0^{2}=0
\end{aligned}
$$

where we use direct substitution for the limits, as they are limits of polynomials. Therefore, we see that $\lim _{x \rightarrow 0} f(x)$ exists and is equal to 0 . By the definition of $f, f(0)=0$. Thus, we see that

$$
f(0)=\lim _{x \rightarrow 0} f(x)
$$

and therefore $f(x)$ is continuous at 0 .
Checking $x=1$: Similiarly to above, we need to check whether

$$
f(1)=\lim _{x \rightarrow 1} f(x)
$$

Again, break this up into checking whether the limit exists, and if it does, whether it's equal to $f(1)$. We have that

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} x^{2}=1 \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}}(1-x)=0
\end{aligned}
$$

Thus, the right-hand and left-hand limits don't match, and therefore the limit doesn't exist. This means that $f(x)$ is not continuous at 1 .

The above calculations show that $f(x)$ is continuous everywher but at $x=1$. Therefore,

$$
f(x) \text { is continuous on }(-\infty, 1) \cup(1, \infty)
$$

(3) Calculate the following limits. You must show all your work to get credit. State if you're using continuity.
(a) $[5 \mathrm{pts}] \lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x}$

Solution:

Here, direct substitution results in $\frac{0}{0}$, which means that $x=0$ is not in the domain of the function. Therefore, we need to do some simplifying calculations - we use the difference of squares formula after multiplying both top and bottom by the conjugate of the top:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x} \cdot \frac{\sqrt{3 x+4}+2}{\sqrt{3 x+4}+2} \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{3 x+4})^{2}-2^{2}}{x(\sqrt{3 x+4}+2)}=\lim _{x \rightarrow 0} \frac{3 x+4-4}{x(\sqrt{3 x+4}+2)} \\
& =\lim _{x \rightarrow 0} \frac{3 x}{x(\sqrt{3 x+4}+2)} \\
& =\lim _{x \rightarrow 0} \frac{3}{\sqrt{3 x+4}+2}
\end{aligned}
$$

canceling out the x in the top and bottom in the last step. We're now at the point where we can do direct substitution, since the function $f(x)=\frac{3}{\sqrt{3 x+4}+2}$ is continuous on its domain, and $x=0$ is in its domain. Therefore,

$$
\lim _{x \rightarrow 0} \frac{3}{\sqrt{3 x+4}+2}=\lim _{x \rightarrow 0} \frac{3}{\sqrt{3 \cdot 0+4}+2}=\frac{3}{\sqrt{4}+2}=\frac{3}{4}
$$

and therefore,

$$
\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x}=\frac{3}{4}
$$

(b) [5 pts] $\lim _{x \rightarrow \infty} \frac{x^{2}+x+1}{2 x^{2}-x+3}$

Solution:

Start by diving both top and bottom by the highest power of x in the denominator, which happens to be x^{2} :

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}+x+1}{2 x^{2}-x+3} & =\lim _{x \rightarrow \infty} \frac{\left(x^{2}+x+1\right) / x^{2}}{\left(2 x^{2}-x+3\right) / x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}+\frac{1}{x^{2}}}{2-\frac{1}{x}+\frac{3}{x^{2}}} \\
& =\frac{\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}{\lim _{x \rightarrow \infty}\left(2-\frac{1}{x}+\frac{3}{x^{2}}\right)} \\
& =\frac{\lim _{x \rightarrow \infty} 1+\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} \frac{1}{x^{2}}}{\lim _{x \rightarrow \infty} 2-\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} \frac{3}{x^{2}}}=\frac{1}{2}
\end{aligned}
$$

using the fact that for any $r>0, \frac{1}{x^{r}}$ approaches 0 as x approaches ∞.
(c) $[5 \mathrm{pts}] \lim _{x \rightarrow 1^{-}} \frac{x+1}{x^{2}-3+2}$

Hint: You might want to factor the denominator first...

Solution:

Note that direct substitution yields $\frac{2}{0}$. This means that direct substitution doesn't work, and that the answer is probably going to be either ∞ or $-\infty$. We just need to decide which one.
As noted in the hint, start by factoring the denominator:

$$
\lim _{x \rightarrow 1^{-}} \frac{x+1}{x^{2}-3+2}=\lim _{x \rightarrow 1^{-}} \frac{x+1}{(x-1)(x-2)}
$$

To see whether what the function is approaching as $x \rightarrow 1^{-}$, plug in a number a little to the left of 1 , like 0.999:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \frac{x+1}{(x-1)(x-2)} & \approx \frac{1+0.999}{(0.999-1)(0.999-2)} \\
& \approx \frac{2}{(\text { Small negative number }) \cdot(-1)} \\
& =\frac{2}{\text { Small positive number }}=\text { Big positive number }
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow 1^{-}} \frac{x+1}{x^{2}-3 x+2}=\infty
$$

(4) (a) $[10 \mathrm{pts}]$ Let $f(x)$ be given in the following graph. Sketch the graph of $f^{\prime}(x)$ on the empty axes below. Make sure to estimate the values of $f^{\prime}(x)$ carefully, and also to record whether $f^{\prime}(x)$ is increasing or decreasing on the graph.

Solution:

Before sketching, we note the following features:

- The slope (derivative) is constant and equal to 1 for $x \leq-2$.
- The derivative is not defined at -2 .
- The derivative is negative (starting about about -2) to the right of 2 , increases until it's 0 at $x=-0.5$, keeps increasing until about 0.7 at $x=0.5$, then again decreases until it's 0 at $x=1.5$.
- Finally, the derivative becomes negative again, decreasing until about -1 a bit to the right of 2 , then increasing and becoming close to the x-axis.
- The derivative is not defined at $x=2.5$, since $f(x)$ is not continuous there.

(b) $[5 \mathrm{pts}]$ Find $f^{\prime}(x)$, if

$$
f(x)=\frac{x^{2}-2 x}{3 x^{3}}+\frac{1}{2 \sqrt{x}}+e^{x-1}
$$

Use only the rules we have learned in class so far.

Solution:

The trick is to write $f(x)$ as a sum of powers of x (and e^{x}) times constants. Simplifying,
we see that

$$
\begin{aligned}
f(x) & =\frac{x^{2}}{3 x^{3}}-\frac{2 x}{3 x^{3}}+\frac{1}{2} \frac{1}{\sqrt{x}}+e^{-1} e^{x} \\
& =\frac{1}{3} x^{-1}-\frac{2}{3} x^{-2}+\frac{1}{2} x^{-1 / 2}+e^{-1} e^{x}
\end{aligned}
$$

Thus, using differentiation rules, we see that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3} \cdot(-1) x^{-2}-\frac{2}{3} \cdot(-2) x^{-3}+\frac{1}{2} \cdot\left(-\frac{1}{2}\right) x^{-3 / 2}+e^{-1} e^{x} \\
& =-\frac{1}{3} x^{-2}+\frac{4}{3} x^{-3}-\frac{1}{4} x^{-3 / 2}+e^{x-1}
\end{aligned}
$$

