\qquad
03/25/2012
Bormashenko
TA session: \qquad
Show your work for all the problems. Good luck!
(1) (a) [5 pts] Use the limit definition of the derivative to calculate $f^{\prime}(x)$, if $f(x)=\frac{1}{x}$.
(b) [5 pts] Use the known derivatives of $\sin (x)$ and $\cos (x)$, and whatever differentiation rules you like, to show that

$$
(\sec (x))^{\prime}=\sec (x) \tan (x)
$$

(2) Calcuate the derivatives of the following functions, using whatever rules you like. You do not need to simplify your answer, but it should be written only in terms of x !
(a) [5 pts] $f(x)=5^{\sin (x)}+\tan ^{-1}(x)+\ln (x)$.
(b) [5 pts] $f(x)=\tan (x)^{x^{2}}$.
(3) Do the following questions:
(a) [5 pts] Find y^{\prime} in terms of x and y, if we have that

$$
e^{x y}+y^{2}+y=x
$$

(b) [5 pts] Let $f(x)$ be given in the following picture:

Find the absolute minimum and the absolute maximum of $f(x)$ on $[-2,2]$. If either of these doesn't exist, justify why not.
(4) [10 pts] A 20 foot ladder is sliding down the wall. When the bottom of the ladder is 12 feet from the wall, the top of the ladder is sliding down at $2 \mathrm{ft} / \mathrm{sec}$. How quickly is the angle between the ladder and the ground changing at that instant?
(5) Do the following questions:
(a) [5 pts] Find the linearization of $f(x)=\sin ^{-1}\left(x^{2}\right)$ at $x=0$.
(b) [5 pts] Use the result from part (a) to estimate $\sin ^{-1}(0.01)$. Useful fact: $0.01=0.1^{2}$.

