## Some Common Inequalities

1. AM-GM Inequality: Those letters stand for Arithmetic Mean - Geometric Mean Inequality. It states that for any positive numbers $a_{1}, a_{2}, \ldots, a_{n}$,

$$
\frac{a_{1}+\cdots+a_{n}}{n} \geq\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}
$$

with equality attained precisely when $a_{1}=a_{2}=\cdots=a_{n}$.
The name comes from the fact that the expression on the left-hand side is called the arithmetic mean of the numbers $a_{1}, a_{2}, \ldots, a_{n}$, whereas the expression on the right-hand side is the geometric mean.
2. The Power Mean Inequalities: The above is actually a specific instance of the power mean inequality. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Then, if $r \neq 0$, we define the $r$ th power mean of the numbers to be

$$
P_{r}\left(a_{1}, \ldots, a_{n}\right)=\left(\frac{a_{1}^{r}+a_{2}^{r}+\cdots+a_{n}^{r}}{n}\right)^{1 / r}
$$

If $r=0$, we define the 0 th power mean to be the geometric mean:

$$
P_{0}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}
$$

Then, the Power Mean inequality states that if $r \leq s$, then the $r$ th power mean is at most the $s$ th power mean, with equality attained if and only if $a_{1}=a_{2}=\cdots=a_{n}$. That is, if $r \leq s$,

$$
P_{r}\left(a_{1}, \ldots, a_{n}\right) \leq P_{s}\left(a_{1}, \ldots, a_{n}\right)
$$

For example, if $r=1$ and $s=2$, this says that

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \leq\left(\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}\right)^{1 / 2}
$$

If $r=0$ and $s=1$, we get the AM-GM Inequality!
3. The Cauchy-Schwarz Inequality If $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are real numbers (not necessarily positive!), then

$$
\left(a_{1} b_{1}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)
$$

