Derivatives Questions

1. A not uncommon calculus mistake is to believe that the product rule for derivatives says that $(f g)^{\prime}=f^{\prime} g^{\prime}$. If $f(x)=e^{x^{2}}$, determine, with proof, whether there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b).
2. Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{aligned}
f^{\prime}=2 f^{2} g h+\frac{1}{g h}, & f(0)=1 \\
g^{\prime} & =f g^{2} h+\frac{4}{f h},
\end{aligned} \quad g(0)=1, ~ 子 r g h^{2}+\frac{1}{f g}, \quad h(0)=1 .
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0 . Hint: See if you can find a differential equation for $f g h$.
3. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.
4. Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$
f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0
$$

5. Let f be a real function with a continuous third derivative such that $f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ are positive for all x. Suppose that $f^{\prime \prime \prime}(x) \leq f(x)$ for all x. Show that $f^{\prime}(x)<2 f(x)$ for all x.
6. Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.

