Derivatives Questions

- 1. A not uncommon calculus mistake is to believe that the product rule for derivatives says that (fg)' = f'g'. If $f(x) = e^{x^2}$, determine, with proof, whether there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b).
- 2. Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$\begin{aligned} f' &= 2f^2gh + \frac{1}{gh}, \quad f(0) = 1, \\ g' &= fg^2h + \frac{4}{fh}, \quad g(0) = 1, \\ h' &= 3fgh^2 + \frac{1}{fg}, \quad h(0) = 1. \end{aligned}$$

Find an explicit formula for f(x), valid in some open interval around 0. **Hint:** See if you can find a differential equation for fgh.

3. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers x and y,

$$\begin{array}{rcl} f(x+y) &=& f(x)f(y) - g(x)g(y), \\ g(x+y) &=& f(x)g(y) + g(x)f(y). \end{array}$$

If f'(0) = 0, prove that $(f(x))^2 + (g(x))^2 = 1$ for all x.

4. Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$f(a) \cdot f'(a) \cdot f''(a) \cdot f'''(a) \ge 0.$$

- 5. Let f be a real function with a continuous third derivative such that f(x), f'(x), f''(x), f'''(x) are positive for all x. Suppose that $f'''(x) \le f(x)$ for all x. Show that f'(x) < 2f(x) for all x.
- 6. Find all differentiable functions $f: (0, \infty) \to (0, \infty)$ for which there is a positive real number a such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0.