Geometry Problems

1. Let A, B, C, D be points on a circle, in that order. Let $A C$ and $B D$ intersect in the point X. Show that $|A X| \cdot|X C|=|B X| \cdot|X D|$.
2. Let $\triangle A B C$ be a triangle. Show that the perpendicular bisectors of $A B, B C$ and $A C$ meet at a single point.
3. Let $\triangle A B C$ be a triangle. Show that the angle bisectors of $\angle A B C, \angle B A C$ and $\angle A C B$ meet at a single point.
4. A right circular cone (i.e, the normal shape of a cone) has a base of radius 1 and a height of radius 3 . A cube is inscribed in the cone so that one face of the cube is contained inthe base of the cone. What is the side length of the cube?
5. Let $\triangle A B C$ be a triangle with circumcenter O, whose circumradius is R. Let D be the foot of the altitude dropped down from A. Let L be the second intersection of the line $A O$ with the circumcircle (the first intersection is obviously A).
(a) Show that triangles $\triangle A B D$ and $\triangle A L C$ are similar, and hence that $|A D| \cdot 2 R=|A C| \cdot|A B|$.
(b) Show that the area of $\triangle A B C$ is $\frac{|A B\|A C\| B C|}{4 R}$.
6. Right triangle $A B C$ has right angle at C and $\angle B A C=\theta$; the point D is chosen on $A B$ so that $|A C|=|A D|=1$: the point E is chosen on $B C$ so that $\angle C D E=\theta$. The perpendicular to $B C$ at E meets $A B$ at F. Evaluate $\lim _{\theta \rightarrow 0}|E F|$.
7. A line from vertex A of an equilateral triangle $\triangle A B C$ meets the opposite side $B C$ in a point P and the circumcircle in Q. Prove that

$$
\frac{1}{|P Q|}=\frac{1}{|B Q|}+\frac{1}{|C Q|}
$$

8. A rectangle, $H O M F$, has side $H O=11$ and $O M=5$. A triangle $A B C$ has H as the intersection of the altitutes, O the center of the circumscribed cirlce, M the midpoint of $B C$, and F the foot of the altitude from A. What is the length of $B C$?
