Pattern-Spotting Questions

1. Find the number of subsets of $\{1,2, \ldots, n\}$ that contain no two consecutive elements of $\{1,2, \ldots, n\}$.
2. In how many ways can a $2 \times n$ rectangle be tiled with 2×1 dominoes? Give your answer in the form of a well-known function.
3. Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers, $n=a_{1}+a_{2}+\cdots+a_{k}$, with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$? For example, with $n=4$ there are four ways: $4,2+2,1+1+2,1+1+1+1$.
4. Given a positive integer n, what is the largest k such that the numbers $1,2, \ldots, n$ can be put into k boxes so that the sum of the numbers in each box is the same? [When $n=8$, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest k is at least 3.]
5. Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.
6. Show that every positive integer is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another. (For example, $23=9+8+6$.)
7. Players $1,2,3, \ldots, n$ are seated around a table, and each has a single penny. Player 1 passes a penny to player 2 , who then passes two pennies to player 3. Player 3 then passes one penny to Player 4, who passes two pennies to Player 5 , and so on, players alternately passing one penny or two to the next player who still has some pennies. A player who runs out of pennies drops out of the game and leaves the table. Find an infinite set of numbers n for which some player ends up with all n pennies.
8. Let $A_{1}=0$ and $A_{2}=1$. For $n>2$, the number A_{n} is defined by concatenating the decimal expansions of A_{n-1} and A_{n-2} from left to right. For example $A_{3}=A_{2} A_{1}=10, A_{4}=A_{3} A_{2}=101, A_{5}=A_{4} A_{3}=10110$, and so forth. Determine all n such that 11 divides A_{n}.
Hint: When looking for a pattern, work mod 11.
