Inequality Problems

1. Show that

$$
1 \cdot 3 \cdot 5 \cdots(2 n-1) \leq n^{n}
$$

2. Show that if a, b, c are all positive, then

$$
(a+b)(b+c)(a+c) \geq 8 a b c
$$

3. Show that if $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=1$, then

$$
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \geq \frac{1}{n}
$$

4. Show that if a, b, c are all positive, then

$$
\sqrt{3(a+b+c)} \geq \sqrt{a}+\sqrt{b}+\sqrt{c}
$$

5. Show that

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{999999}{1000000}<\frac{1}{1000}
$$

Hint: Square each side and "give a little" to create a telescoping product.
6. (1998 Putnam) Find the minimum value of

$$
\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)}
$$

for $x>0$.
7. Show that for any integer n,

$$
\left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n+1}\right)^{n+1}
$$

Note: You may recognize these expressions: they approach e as $n \rightarrow \infty$.
8. If a, b and c are sides of a triangle, show that

$$
\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c} \geq 3
$$

9. (2003 Putnam) Show that if $a_{1}, a_{2}, \ldots, a_{n}$ are non-negative real numbers, then

$$
\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \ldots b_{n}\right)^{1 / n} \leq\left[\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)\right]^{1 / n}
$$

10. (2004 Putnam) Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}} \leq \frac{m!\cdot n!}{m^{m} n^{n}}
$$

Hint: The fastest way to do this is far too clever for its own good and uses the binomial formula. However, there are many different methods!

