
Inequality Problem Solutions

1. Show that
1 · 3 · 5 · · · (2n− 1) ≤ nn

Solution: By the AM-GM inequality, we have that

n
√

1 · 3 · 5 · · · (2n− 1) ≤ 1 + 3 + · · ·+ (2n− 1)

n

since there are n terms in {1, 3, . . . , 2n−1}. Now, it’s a well-known formula
(with a beautiful visual demonstration – look it up!) that

1 + 3 + · · ·+ (2n− 1) = n2

Thus, simplifying the above, we get

n
√

1 · 3 · 5 · · · (2n− 1) ≤ n2

n
= n

Finally, taking the nth power of both sides, we get that

1 · 3 · 5 · · · (2n− 1) ≤ nn

as required.

2. Show that if a, b, c are all positive, then

(a + b)(b + c)(a + c) ≥ 8abc

Solution: Using AM-GM, we get that

a + b

2
≥
√
ab

⇒ a + b ≥ 2
√
ab

Similar manipulations show that

b + c ≥ 2
√
bc

a + c ≥ 2
√
ac

Multiplying all these inequalities together (this is allowed, since all the
numbers involved are positive), we get

(a + b)(b + c)(a + c) ≥ (2
√
ab)(2

√
bc)(2

√
ac)

= 8
√
ab · bc · ac = 8

√
a2b2c2

= 8abc

as required.
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3. Show that if a1, a2, . . . , an are real numbers such that a1+a2+· · ·+an = 1,
then

a21 + a22 + · · ·+ a2n ≥
1

n

Solution: This question is best done using the Cauchy-Schwarz Inequal-
ity – note that it also follows from the Power Mean inequality with r = 1
and s = 2, but that inequality would only apply for a1, a2, . . . , an posi-
tive, and as such some argument would need to be made for the case where
some of them are negative. Cauchy-Schwarz, on the other hand, applies
to both positive and negative numbers.

Using Cauchy-Schwarz with b1 = b2 = · · · = bn = 1, we get that

(a21 + a22 + · · ·+ a2n)(12 + 12 + · · ·+ 12) ≥ (a1 · 1 + a2 · 1 + · · ·+ an · 1)2

⇒ (a21 + a22 + · · ·+ a2n) · n ≥ (a1 + a2 + ·+ an)2

Since we’re given that a1 + a2 + · · ·+ an = 1, this simplifies to

(a21 + a22 + · · ·+ a2n) · n ≥ 1

⇒ (a21 + a22 + · · ·+ a2n) ≥ 1

n

as required.

4. Show that if a, b, c are all positive, then√
3(a + b + c) ≥

√
a +
√
b +
√
c

Solution: From the Power Mean inequality with r = 1
2 and s = 1, we get

that (
a1/2 + b1/2 + c1/2

3

)2

≤ a + b + c

3

Thus, taking the square root of both sides and rearranging, we get

a1/2 + b1/2 + c1/2

3
≤
√

a + b + c

3

⇒
√
a +
√
b +
√
c ≤ 3

√
a + b + c

3
=

√
9 · a + b + c

3

=
√

3(a + b + c)

which is precisely what we wanted.

5. Show that
1

2
· 3

4
· 5

6
· · · 999999

1000000
<

1

1000

Hint: Square each side and “give a little” to create a telescoping product.
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Solution: To make the calculations look a little less unwieldy, let

r =
1

2
· 3

4
· 5

6
· · · 999999

1000000

Thus, what we need to show is that r ≤ 1
1000 . Now, note that

r2 =
12

22
· 32

42
· 52

62
· · · 9999992

10000002

Since decreasing the denominator of a fraction makes it bigger, we have
that

12

22
≤ 12

22 − 1
=

12

(2− 1)(2 + 1)
=

12

1 · 3
32

42
≤ 32

42 − 1
=

32

(4− 1)(4 + 1)
=

32

3 · 5
52

62
≤ 52

62 − 1
=

52

(6− 1)(6 + 1)
=

52

5 · 7
...

...

9999992

10000002
≤ 9999992

10000002 − 1
=

9999992

(1000000− 1)(1000000 + 1)

=
9999992

999999 · 1000001

Multiplying all these together, we get that

r2 ≤ 12

1 · 3
· 32

3 · 5
· 52

5 · 7
· · · 9999992

999999 · 1000001

=
12 · 32 · 52 · · · 9999992

1 · 32 · 52 · · · 9999992 · 1000001

=
1

1000001
≤ 1

1000000

=

(
1

1000

)2

Now, taking the square root of both sides, we get that

r ≤ 1

1000

as required.

6. (1998 Putnam) Find the minimum value of

(x + 1/x)6 − (x6 + 1/x6)− 2

(x + 1/x)3 + (x3 + 1/x3)

for x > 0.
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Solution: This question actually requires doing a little bit of clean up
before working on he inequality. Note that(

x3 + 1/x3
)2

= (x3)2 + 2 · x3 · 1/x3 +
(
1/x3

)2
= x6 + 2 + 1/x6

Therefore,

(x + 1/x)6 − (x6 + 1/x6)− 2

(x + 1/x)3 + (x3 + 1/x3)
=

(x + 1/x)6 − (x6 + 1/x6 + 2)

(x + 1/x)3 + (x3 + 1/x3)

=
(x + 1/x)6 − (x3 + 1/x3)2

(x + 1/x)3 + (x3 + 1/x3)

Now, using difference of squares, the above is precisely

((x + 1/x)3 + (x3 + 1/x3))((x + 1/x)3 − (x3 + 1/x3))

(x + 1/x)3 + (x3 + 1/x3)

which simplifies to

(x + 1/x)3 − (x3 + 1/x3) = x3 + 3x + 3/x + 1/x3 − x3 − 1/x3

= 3x + 3/x = 3(x + 1/x)

Finally, using AM-GM, we have that

3(x + 1/x) ≥ 3 · 2
√
x · 1/x = 6

Therefore, we have gotten a lower bound of 6. Since AM-GM attains
equality precisely when all the values are equal, we can have equality if
x = 1/x. Thus, equality will be attained when x = 1. Trying it, we see
that

(1 + 1/1)6 − (16 + 1/16)− 2

(1 + 1/1)3 + (13 + 1/13)
=

26 − 2− 2

23 + 2

=
64− 4

8 + 2
=

60

10

= 6

So indeed, we can attain the value 6.

7. Show that for any integer n,(
1 +

1

n

)n

<

(
1 +

1

n + 1

)n+1

Note: You may recognize these expressions: they approach e as n→∞.
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Solution: Let us use AM-GM with

a1 = 1, a2 = 1 +
1

n
, · · · , an+1 = 1 +

1

n
,

The inequality gives us that

n+1
√
a1 · a2 · · · an+1 ≤

a1 + · · ·+ an+1

n + 1

Now, note that

a1 · a2 · · · an+1 = 1 ·
(

1 +
1

n

)
· · ·
(

1 +
1

n

)
=

(
1 +

1

n

)n

Also,

a1 + · · ·+ an+1

n + 1
=

1

n + 1

(
1 +

(
1 +

1

n

)
+ · · ·+

(
1 +

1

n

))
=

1

n + 1

(
n + 1 + n · 1

n

)
= 1 +

1

n + 1

Thus, plugging these back into the inequality yields

n+1

√(
1 +

1

n

)n

≤ 1 +
1

n + 1

Finally, taking the n + 1st power of both sides gives(
1 +

1

n

)n

≤
(

1 +
1

n + 1

)n+1

as required.

8. If a, b and c are sides of a triangle, show that

a

b + c− a
+

b

a + c− b
+

c

a + b− c
≥ 3

Solution: It is well known that if a, b and c are sides of a triangle, then
the triangle inequality tells us that

a + b ≥ c, a + c ≥ b, b + c ≥ a
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The trick to this questions is to rephrase it in terms of the quantities

x = a + b− c

y = a + c− b

z = b + c− a

which the triangle inequality tells us are positive. It’s straightforward to
check that

a =
x + y

2
, b =

x + z

2
, c =

y + z

2

Rewriting the desired inequality in terms of x, y and z, we need to show
that

x + y

2z
+

x + z

2y
+

y + z

2x
≥ 3

for x, y, z > 0. This turns out to be easy to show. Using AM-GM,

x + y

2z
+

x + z

2y
+

y + z

2x
=

x

2z
+

y

2z
+

x

2y
+

z

2y
+

y

2x
+

z

2x

≥ 6 6

√
x

2z
· y

2z
· x

2y
· z

2y
· y

2x
· z

2x

= 6 6

√
x2y2z2

26x2y2z2
= 6

6

√
1

26
= 6 · 1

2

= 3

as required.

9. (2003 Putnam) Show that if a1, a2, . . . , an are non-negative real numbers,
then

(a1a2 . . . an)1/n + (b1b2 . . . bn)1/n ≤ [(a1 + b1)(a2 + b2) . . . (an + bn)]1/n

Solution: The desired inequality is clearly equivalent to

(a1a2 . . . an)1/n + (b1b2 . . . bn)1/n

[(a1 + b1)(a2 + b2) . . . (an + bn)]1/n
≤ 1

Using AM-GM,

(a1a2 . . . an)1/n

[(a1 + b1)(a2 + b2) . . . (an + bn)]1/n
=

(
a1

a1 + b1
· a2
a2 + b2

· · · an
an + bn

)1/n

≤ 1

n

(
a1

a1 + b1
+ · · ·+ an

an + bn

)
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Similarly,

(b1b2 . . . bn)1/n

[(a1 + b1)(a2 + b2) . . . (an + bn)]1/n
≤ 1

n

(
b1

a1 + b1
+ · · ·+ bn

an + bn

)
Therefore, adding these up,

(a1a2 . . . an)1/n + (b1b2 . . . bn)1/n

[(a1 + b1)(a2 + b2) . . . (an + bn)]1/n
≤

≤ 1

n

(
a1

a1 + b1
+ · · ·+ an

an + bn

)
+

1

n

(
b1

a1 + b1
+ · · ·+ bn

an + bn

)
=

1

n

(
a1

a1 + b1
+

b1
a1 + b1

+ · · ·+ an
an + bn

+
bn

an + bn

)
=

1

n

(
a1 + b1
a1 + b1

+ · · ·+ an + bn
an + bn

)
=

1

n
· n = 1

which shows precisely what’s required.

10. (2004 Putnam) Let m and n be positive integers. Show that

(m + n)!

(m + n)m+n
≤ m! · n!

mmnn

Hint: The fastest way to do this is far too clever for its own good and
uses the binomial formula. However, there are many different methods!

Solution: The binomial formula states that

(m + n)m+n =

m+n∑
i=0

(
m + n

i

)
minm+n−i

Since m and n are positive integers, all the summands above are posi-
tive. Therefore, (m + n)m+n is larger than any one of the summands. In
particular, letting i = m, we see that

(m + n)m+n ≥
(
m + n

m

)
mmnm+n−m

=
(m + n)!

m! · n!
mmnn

Rearranging this inequality, we get

(m + n)!

(m + n)m+n
≤ m! · n!

mmnn

as required.
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