Inequality Problem Solutions

1. Show that

$$
1 \cdot 3 \cdot 5 \cdots(2 n-1) \leq n^{n}
$$

Solution: By the AM-GM inequality, we have that

$$
\sqrt[n]{1 \cdot 3 \cdot 5 \cdots(2 n-1)} \leq \frac{1+3+\cdots+(2 n-1)}{n}
$$

since there are n terms in $\{1,3, \ldots, 2 n-1\}$. Now, it's a well-known formula (with a beautiful visual demonstration - look it up!) that

$$
1+3+\cdots+(2 n-1)=n^{2}
$$

Thus, simplifying the above, we get

$$
\sqrt[n]{1 \cdot 3 \cdot 5 \cdots(2 n-1)} \leq \frac{n^{2}}{n}=n
$$

Finally, taking the nth power of both sides, we get that

$$
1 \cdot 3 \cdot 5 \cdots(2 n-1) \leq n^{n}
$$

as required.
2. Show that if a, b, c are all positive, then

$$
(a+b)(b+c)(a+c) \geq 8 a b c
$$

Solution: Using AM-GM, we get that

$$
\begin{aligned}
\frac{a+b}{2} & \geq \sqrt{a b} \\
\Rightarrow a+b & \geq 2 \sqrt{a b}
\end{aligned}
$$

Similar manipulations show that

$$
\begin{aligned}
& b+c \geq 2 \sqrt{b c} \\
& a+c \geq 2 \sqrt{a c}
\end{aligned}
$$

Multiplying all these inequalities together (this is allowed, since all the numbers involved are positive), we get

$$
\begin{aligned}
(a+b)(b+c)(a+c) & \geq(2 \sqrt{a b})(2 \sqrt{b c})(2 \sqrt{a c}) \\
& =8 \sqrt{a b \cdot b c \cdot a c}=8 \sqrt{a^{2} b^{2} c^{2}} \\
& =8 a b c
\end{aligned}
$$

as required.
3. Show that if $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=1$, then

$$
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \geq \frac{1}{n}
$$

Solution: This question is best done using the Cauchy-Schwarz Inequality - note that it also follows from the Power Mean inequality with $r=1$ and $s=2$, but that inequality would only apply for $a_{1}, a_{2}, \ldots, a_{n}$ positive, and as such some argument would need to be made for the case where some of them are negative. Cauchy-Schwarz, on the other hand, applies to both positive and negative numbers.
Using Cauchy-Schwarz with $b_{1}=b_{2}=\cdots=b_{n}=1$, we get that

$$
\begin{aligned}
\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(1^{2}+1^{2}+\cdots+1^{2}\right) & \geq\left(a_{1} \cdot 1+a_{2} \cdot 1+\cdots+a_{n} \cdot 1\right)^{2} \\
\Rightarrow\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) \cdot n & \geq\left(a_{1}+a_{2}+\cdot+a_{n}\right)^{2}
\end{aligned}
$$

Since we're given that $a_{1}+a_{2}+\cdots+a_{n}=1$, this simplifies to

$$
\begin{aligned}
& \left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) \cdot n \geq 1 \\
& \Rightarrow\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) \geq \frac{1}{n}
\end{aligned}
$$

as required.
4. Show that if a, b, c are all positive, then

$$
\sqrt{3(a+b+c)} \geq \sqrt{a}+\sqrt{b}+\sqrt{c}
$$

Solution: From the Power Mean inequality with $r=\frac{1}{2}$ and $s=1$, we get that

$$
\left(\frac{a^{1 / 2}+b^{1 / 2}+c^{1 / 2}}{3}\right)^{2} \leq \frac{a+b+c}{3}
$$

Thus, taking the square root of both sides and rearranging, we get

$$
\begin{aligned}
\frac{a^{1 / 2}+b^{1 / 2}+c^{1 / 2}}{3} & \leq \sqrt{\frac{a+b+c}{3}} \\
\Rightarrow \sqrt{a}+\sqrt{b}+\sqrt{c} & \leq 3 \sqrt{\frac{a+b+c}{3}}=\sqrt{9 \cdot \frac{a+b+c}{3}} \\
& =\sqrt{3(a+b+c)}
\end{aligned}
$$

which is precisely what we wanted.
5. Show that

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{999999}{1000000}<\frac{1}{1000}
$$

Hint: Square each side and "give a little" to create a telescoping product.

Solution: To make the calculations look a little less unwieldy, let

$$
r=\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{999999}{1000000}
$$

Thus, what we need to show is that $r \leq \frac{1}{1000}$. Now, note that

$$
r^{2}=\frac{1^{2}}{2^{2}} \cdot \frac{3^{2}}{4^{2}} \cdot \frac{5^{2}}{6^{2}} \cdots \frac{999999^{2}}{1000000^{2}}
$$

Since decreasing the denominator of a fraction makes it bigger, we have that

$$
\begin{aligned}
\frac{1^{2}}{2^{2}} & \leq \frac{1^{2}}{2^{2}-1}=\frac{1^{2}}{(2-1)(2+1)}=\frac{1^{2}}{1 \cdot 3} \\
\frac{3^{2}}{4^{2}} & \leq \frac{3^{2}}{4^{2}-1}=\frac{3^{2}}{(4-1)(4+1)}=\frac{3^{2}}{3 \cdot 5} \\
\frac{5^{2}}{6^{2}} & \leq \frac{5^{2}}{6^{2}-1}=\frac{5^{2}}{(6-1)(6+1)}=\frac{5^{2}}{5 \cdot 7} \\
& \vdots \\
\frac{999999^{2}}{1000000^{2}} & \leq \frac{999999^{2}}{1000000^{2}-1}=\frac{999999^{2}}{(1000000-1)(1000000+1)} \\
& =\frac{999999^{2}}{999999 \cdot 1000001}
\end{aligned}
$$

Multiplying all these together, we get that

$$
\begin{aligned}
r^{2} & \leq \frac{1^{2}}{1 \cdot 3} \cdot \frac{3^{2}}{3 \cdot 5} \cdot \frac{5^{2}}{5 \cdot 7} \cdots \frac{999999^{2}}{999999 \cdot 1000001} \\
& =\frac{1^{2} \cdot 3^{2} \cdot 5^{2} \cdots 999999^{2}}{1 \cdot 3^{2} \cdot 5^{2} \cdots 999999^{2} \cdot 1000001} \\
& =\frac{1}{1000001} \leq \frac{1}{1000000} \\
& =\left(\frac{1}{1000}\right)^{2}
\end{aligned}
$$

Now, taking the square root of both sides, we get that

$$
r \leq \frac{1}{1000}
$$

as required.
6. (1998 Putnam) Find the minimum value of

$$
\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)}
$$

for $x>0$.

Solution: This question actually requires doing a little bit of clean up before working on he inequality. Note that

$$
\begin{aligned}
\left(x^{3}+1 / x^{3}\right)^{2} & =\left(x^{3}\right)^{2}+2 \cdot x^{3} \cdot 1 / x^{3}+\left(1 / x^{3}\right)^{2} \\
& =x^{6}+2+1 / x^{6}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)} & =\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}+2\right)}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)} \\
& =\frac{(x+1 / x)^{6}-\left(x^{3}+1 / x^{3}\right)^{2}}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)}
\end{aligned}
$$

Now, using difference of squares, the above is precisely

$$
\frac{\left((x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)\right)\left((x+1 / x)^{3}-\left(x^{3}+1 / x^{3}\right)\right)}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)}
$$

which simplifies to

$$
\begin{aligned}
(x+1 / x)^{3}-\left(x^{3}+1 / x^{3}\right) & =x^{3}+3 x+3 / x+1 / x^{3}-x^{3}-1 / x^{3} \\
& =3 x+3 / x=3(x+1 / x)
\end{aligned}
$$

Finally, using AM-GM, we have that

$$
3(x+1 / x) \geq 3 \cdot 2 \sqrt{x \cdot 1 / x}=6
$$

Therefore, we have gotten a lower bound of 6 . Since AM-GM attains equality precisely when all the values are equal, we can have equality if $x=1 / x$. Thus, equality will be attained when $x=1$. Trying it, we see that

$$
\begin{aligned}
\frac{(1+1 / 1)^{6}-\left(1^{6}+1 / 1^{6}\right)-2}{(1+1 / 1)^{3}+\left(1^{3}+1 / 1^{3}\right)} & =\frac{2^{6}-2-2}{2^{3}+2} \\
& =\frac{64-4}{8+2}=\frac{60}{10} \\
& =6
\end{aligned}
$$

So indeed, we can attain the value 6 .
7. Show that for any integer n,

$$
\left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n+1}\right)^{n+1}
$$

Note: You may recognize these expressions: they approach e as $n \rightarrow \infty$.

Solution: Let us use AM-GM with

$$
a_{1}=1, a_{2}=1+\frac{1}{n}, \cdots, a_{n+1}=1+\frac{1}{n}
$$

The inequality gives us that

$$
\sqrt[n+1]{a_{1} \cdot a_{2} \cdots a_{n+1}} \leq \frac{a_{1}+\cdots+a_{n+1}}{n+1}
$$

Now, note that

$$
\begin{aligned}
a_{1} \cdot a_{2} \cdots a_{n+1} & =1 \cdot\left(1+\frac{1}{n}\right) \cdots\left(1+\frac{1}{n}\right) \\
& =\left(1+\frac{1}{n}\right)^{n}
\end{aligned}
$$

Also,

$$
\begin{aligned}
\frac{a_{1}+\cdots+a_{n+1}}{n+1} & =\frac{1}{n+1}\left(1+\left(1+\frac{1}{n}\right)+\cdots+\left(1+\frac{1}{n}\right)\right) \\
& =\frac{1}{n+1}\left(n+1+n \cdot \frac{1}{n}\right) \\
& =1+\frac{1}{n+1}
\end{aligned}
$$

Thus, plugging these back into the inequality yields

$$
\sqrt[n+1]{\left(1+\frac{1}{n}\right)^{n}} \leq 1+\frac{1}{n+1}
$$

Finally, taking the $n+1$ st power of both sides gives

$$
\left(1+\frac{1}{n}\right)^{n} \leq\left(1+\frac{1}{n+1}\right)^{n+1}
$$

as required.
8. If a, b and c are sides of a triangle, show that

$$
\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c} \geq 3
$$

Solution: It is well known that if a, b and c are sides of a triangle, then the triangle inequality tells us that

$$
a+b \geq c, a+c \geq b, b+c \geq a
$$

The trick to this questions is to rephrase it in terms of the quantities

$$
\begin{aligned}
& x=a+b-c \\
& y=a+c-b \\
& z=b+c-a
\end{aligned}
$$

which the triangle inequality tells us are positive. It's straightforward to check that

$$
a=\frac{x+y}{2}, b=\frac{x+z}{2}, c=\frac{y+z}{2}
$$

Rewriting the desired inequality in terms of x, y and z, we need to show that

$$
\frac{x+y}{2 z}+\frac{x+z}{2 y}+\frac{y+z}{2 x} \geq 3
$$

for $x, y, z>0$. This turns out to be easy to show. Using AM-GM,

$$
\begin{aligned}
\frac{x+y}{2 z}+\frac{x+z}{2 y}+\frac{y+z}{2 x} & =\frac{x}{2 z}+\frac{y}{2 z}+\frac{x}{2 y}+\frac{z}{2 y}+\frac{y}{2 x}+\frac{z}{2 x} \\
& \geq 6 \sqrt[6]{\frac{x}{2 z} \cdot \frac{y}{2 z} \cdot \frac{x}{2 y} \cdot \frac{z}{2 y} \cdot \frac{y}{2 x} \cdot \frac{z}{2 x}} \\
& =6 \sqrt[6]{\frac{x^{2} y^{2} z^{2}}{2^{6} x^{2} y^{2} z^{2}}}=6 \sqrt[6]{\frac{1}{2^{6}}}=6 \cdot \frac{1}{2} \\
& =3
\end{aligned}
$$

as required.
9. (2003 Putnam) Show that if $a_{1}, a_{2}, \ldots, a_{n}$ are non-negative real numbers, then

$$
\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \ldots b_{n}\right)^{1 / n} \leq\left[\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)\right]^{1 / n}
$$

Solution: The desired inequality is clearly equivalent to

$$
\frac{\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \ldots b_{n}\right)^{1 / n}}{\left[\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)\right]^{1 / n}} \leq 1
$$

Using AM-GM,

$$
\begin{aligned}
\frac{\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}}{\left[\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)\right]^{1 / n}} & =\left(\frac{a_{1}}{a_{1}+b_{1}} \cdot \frac{a_{2}}{a_{2}+b_{2}} \cdots \frac{a_{n}}{a_{n}+b_{n}}\right)^{1 / n} \\
& \leq \frac{1}{n}\left(\frac{a_{1}}{a_{1}+b_{1}}+\cdots+\frac{a_{n}}{a_{n}+b_{n}}\right)
\end{aligned}
$$

Similarly,

$$
\frac{\left(b_{1} b_{2} \ldots b_{n}\right)^{1 / n}}{\left[\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)\right]^{1 / n}} \leq \frac{1}{n}\left(\frac{b_{1}}{a_{1}+b_{1}}+\cdots+\frac{b_{n}}{a_{n}+b_{n}}\right)
$$

Therefore, adding these up,

$$
\begin{aligned}
& \frac{\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \ldots b_{n}\right)^{1 / n}}{\left[\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)\right]^{1 / n}} \leq \\
& \quad \leq \frac{1}{n}\left(\frac{a_{1}}{a_{1}+b_{1}}+\cdots+\frac{a_{n}}{a_{n}+b_{n}}\right)+\frac{1}{n}\left(\frac{b_{1}}{a_{1}+b_{1}}+\cdots+\frac{b_{n}}{a_{n}+b_{n}}\right) \\
& \quad=\frac{1}{n}\left(\frac{a_{1}}{a_{1}+b_{1}}+\frac{b_{1}}{a_{1}+b_{1}}+\cdots+\frac{a_{n}}{a_{n}+b_{n}}+\frac{b_{n}}{a_{n}+b_{n}}\right) \\
& \quad=\frac{1}{n}\left(\frac{a_{1}+b_{1}}{a_{1}+b_{1}}+\cdots+\frac{a_{n}+b_{n}}{a_{n}+b_{n}}\right) \\
& \quad=\frac{1}{n} \cdot n=1
\end{aligned}
$$

which shows precisely what's required.
10. (2004 Putnam) Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}} \leq \frac{m!\cdot n!}{m^{m} n^{n}}
$$

Hint: The fastest way to do this is far too clever for its own good and uses the binomial formula. However, there are many different methods!

Solution: The binomial formula states that

$$
(m+n)^{m+n}=\sum_{i=0}^{m+n}\binom{m+n}{i} m^{i} n^{m+n-i}
$$

Since m and n are positive integers, all the summands above are positive. Therefore, $(m+n)^{m+n}$ is larger than any one of the summands. In particular, letting $i=m$, we see that

$$
\begin{aligned}
(m+n)^{m+n} & \geq\binom{ m+n}{m} m^{m} n^{m+n-m} \\
& =\frac{(m+n)!}{m!\cdot n!} m^{m} n^{n}
\end{aligned}
$$

Rearranging this inequality, we get

$$
\frac{(m+n)!}{(m+n)^{m+n}} \leq \frac{m!\cdot n!}{m^{m} n^{n}}
$$

as required.

