Modular Arithmetic Facts

1. We say that $x \equiv y(\bmod n)$ if x and y has the same remainder when divided by n; another way to put it is to say that n divides $x-y$.
2. Congruence classes can be added and multiplied the same way as normal numbers: for example, if

$$
\begin{array}{ll}
x \equiv 1 & (\bmod n) \\
y \equiv 2 & (\bmod n)
\end{array}
$$

then we have that $x+y \equiv 3(\bmod n), x y \equiv 2(\bmod n)$.
3. There's no division with congruence classes! However, if a and n are coprime (that is, have no factors in common), then there exists a unique congruence class a^{-1} such that

$$
a a^{-1} \equiv 1 \quad(\bmod n)
$$

For example, $4 \equiv 2^{-1}(\bmod 7)$ because $2 \cdot 4 \equiv 1(\bmod 7)$.
4. Fermat's Little Theorem: If p is prime, and a isn't divisible by p, then

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

5. Euler's Theorem: This is a generalization of Fermat's little theorem. If the prime factorization of n is $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, then define the Euler phi function as:

$$
\phi(n)=\left(p_{1}^{a_{1}}-p_{1}^{a_{1}-1}\right) \cdots\left(p_{k}^{a_{k}}-p_{k}^{a_{k}-1}\right)
$$

For example, if $n=12$, then $n=2^{2} \cdot 3^{1}$, and therefore

$$
\phi(12)=\left(2^{2}-2^{1}\right) \cdot\left(3^{1}-3^{0}\right)=2 \cdot 2=4
$$

Euler's theorem states that if a and n are coprime (have no factors in common), then

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

Note: The Euler phi function actually counts the number of integers in the set $\{1,2, \ldots, n\}$ that are coprime to n. For example, $\phi(12)=4$ because the only integers in $\{1,2, \ldots, 12\}$ coprime to 12 are $1,5,7$ and 11 .

