Modular Arithmetic Questions

1. Compute $5^{15}(\bmod 7)$ and $7^{13}(\bmod 11)$.
2. Find the last two digits of 7^{100}.
3. Prove that if $x^{3}+y^{3}=z^{3}$ has a solution in integers, then one of the numbers must be a multiple of 7 .
4. Show that an integer is divisible by 9 if and only if the sum of its digits is divisible by 9 .
5. Prove that $n^{7}-n$ is divisible by 42 for any n.
6. Given a set of 7 integers, show that there is a pair either whose sum or whose difference is divisible by 10 .
7. Given n integers, show that there's a subset whose sum is divisible by n.
8. Prove that if p is a prime, then $(p-1)!\equiv-1(\bmod p)$
9. Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$.
10. The number $d_{1} d_{2} \ldots d_{9}$ has nine (not necessarily distinct) decimal digits. The number $e_{1} e_{2} \ldots e_{9}$ is such that each of the nine 9 -digit numbers formed by replacing just one of the digits d_{i} is $d_{1} d_{2} \ldots d_{9}$ by the corresponding digit $e_{i}(1 \leq i \leq 9)$ is divisible by 7 . The number $f_{1} f_{2} \ldots f_{9}$ is related to $e_{1} e_{2} \ldots e_{9}$ is the same way: that is, each of the nine numbers formed by replacing one of the e_{i} by the corresponding f_{i} is divisible by 7 . Show that, for each $i, d_{i}-f_{i}$ is divisible by 7 . [For example, if $d_{1} d_{2} \ldots d_{9}=199501996$, then e_{6} may be 2 or 9 , since 199502996 and 199509996 are multiples of 7.]
