
Solutions to Parity Problems:

1. In a 6× 6 chart all but one corner blue square are painted white. You are
allowed to repaint any column or any row in the chart (i.e., you can select
any row or column and flip the color of all squares within that line). Is
it possible to attain an entirely white chart by using only the permitted
operations?

Example operation:

Solution: A little bit of experimenting will show that no matter how
many moves you make, the number of blue squares will stay odd. (Try it
yourself and see to check!)

Why does that happen? To show that the number of squares stay odd,
it suffices to show that it stays odd after any one operation. Let’s try to
prove that. An operation flips the color of every square in a given row or
column. Let’s say that before the operation, this row or column had x
blue squares. In that case, it clearly had 6− x white squares.

Since the operation recolors every square, the number of blue squares in
our row or column changes to 6− x. But note that

(6− x)− x = 6− 2x = an even number

which shows that x and 6 − x are of the same parity. This means our
operation didn’t change the parity of the number of squares in our chosen
row or column. This means we didn’t change the overall parity of the
number of blue squares in the grid, and so we’re done.

Note: I found it rather tedious to write ‘row or column’ every single
time in the proof above! This is precisely why, when two possibilities
are entirely symmetric, people tend to use the phrase “without loss of
generality.” In this proof, we’d say “without loss of generality, assume
we’re flipping all the squares in some row” and proceed just like before.

2. John and Pete have three pieces of paper. Each of the boys picks one
piece, tears it up, and puts the smaller pieces back. John only tears a
piece of paper into 3 smaller pieces while Pete only tears a piece of paper
into 5 smaller pieces. After a few minutes can there be exactly 100 pieces
of paper?
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Sketch: Here, we would show that no matter what John and Pete do, the
number of pieces of paper stays odd. We’d have to show that this happens
no matter which one of them is doing the tearing – note that this works
because both 3 and 5 are odd.

This shows that it’s impossible that after a few minutes there are exactly
100 pieces of paper. It’s also probably impossible that you could have
some methodical little boys, but that’s a separate issue. . .

3. All natural numbers from 1 to 101 are written in a row. Can the signs
“+” and “−” be placed between them so that the value of the resulting
expression is 0?

Sketch: Here, note that

1 + 2 + 3 + · · ·+ 101 =
101 · 102

2
= 101 · 51 = odd number

Furthermore, it is not difficult to show that changing a “+” to a “−”
doesn’t change the parity of the expression. Therefore, any number we
can get by writing the numbers from 1 to 101 in a row and placing plus
and minus signs between them must be odd. This means it can’t possibly
be equal to 0.

4. Of 101 coins, 50 are counterfeit, and they differ from the genuine coins
in weight by 1 gram. Peter has a scale in the form of a balance which
shows the difference in weight between the objects placed on each pan.
He chooses one coin, and wants to find out whether it is counterfeit. Can
he do this in one weighing?

Solution: Yes, he can. Here’s what he can do: he can take the remaining
100 coins and split them however he likes into two groups of 50. He should
then weigh the two groups against each other. If the difference between the
weights of two groups is odd, then the coin is counterfeit; if the difference
between the weights is even, then the coin is real. (And yes, the difference
will definitely be an integer – more on that below.)

To show how this works, we first establish some notation. Let the weight of
a normal coin be w grams. Since we know that the weight of a counterfeit
coin differs from w by 1 gram, for each coin, it’s either w − 1 or w + 1.

Say the two groups of 50 coins have weights c1, . . . , c50 and c51, . . . , c100,
respectively. Our scale will show the difference between the weights of the
groups: to be precise, we will know the value of

(c1 + · · ·+ c50)− (c51 + ... + c100)

Rearranging a bit, this is exactly the same as:

(c1 − w) + (c2 − w) + · · ·+ (c50 − w)− (c51 − w)− · · · − (c100 − w)
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Note that this expression now uses only integers, since ci−w is an integer
for all i. Since a number and its negative have precisely the same parity,
the above has the same parity as

(c1 − w) + (c2 − w) + · · ·+ (c100 − w)

But we know that ci − w is either 1 or −1 if coin i is counterfeit, and
is 0 if coin i is real. Since both 1 and −1 are odd, while 0 is even, the
parity of the above sum tells us precisely whether there’s an even or an
odd number of counterfeit coins in the 100 we’re weighing. If there’s an
odd number of counterfeit coins being weighed, since the total number of
counterfeit coins is even, the remaining 101st coin must be real. If there’s
an even number of counterfeit coins being weighed, we similarly conclude
that the remaining 101st coin is real. This concludes the argument!

5. Suppose a, b and c are integers such that the equation ax2 + bx + c = 0
has a rational solution. Prove that at least one of the integers a, b and c
must be even.

Solution: Let the rational solution of our equation be p
q , where p and q

have no factors in common. Proceed by contradiction: assume that a, b
and c are all odd. Plugging in p

q , we see that

a
p2

q2
+ b

p

q
+ c = 0

Multiplying both sides by q2, we get that

ap2 + bpq + cq2 = 0

Now, since p and q have no factors in common, either they are both odd,
or one of them is even. If p and q are both odd, then ap2, bpq, and cq2 are
also all odd. A sum of three odd numbers can’t be 0, so this is impossible.

Therefore, we must have that one of p and q is even, and the other one is
odd. Without loss of generality, assume that p is even (we aren’t losing
generality because our assumptions on a and c are identical, and therefore
the above expression is symmetric in p and q.) Then, we have that ap2

and bpq are even, while cq2 is odd. Thus, we have a sum of two even
numbers and an odd number, which also can’t be 0.

We have now ruled out all possibilities, leading to a contradiction. There-
fore, it’s impossible that all of a, b and c are odd, and thus at least one of
them must be even.

6. Can a convex nonagon (a polygon with 9 sides) be cut into parallelograms?

Sketch: No, it can’t. Assume that it is in fact possible, and proceed by
contradiction. Now, we’re able to pair up the sides of the nonagon in the
following manner:
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• Start at a side of the nonagon. Since we’ve split up the nonagon
into parallelograms, this side must contain a side of a parallelogram.
Jump to the opposite side of this parallelogram. (Here, and in the
subsequent steps, you may have a choice of parallelograms – it doesn’t
matter how you make it.)

• We’re now at a side of a parallelogram. If this is contained in an-
other side of the nonagon, we’re done. If not, then it must overlap
with a side of another interior parallelogram which is across the line
from the one we were at before. Jump to the opposite side of this
parallelogram.

• This process will create a sequence of parallel sides: we will start
at the side of the nonagon, and proceed to jump to sides of interior
parallelograms. Since there are finitely many interior parallelograms,
and we keep moving the same direction, we will eventually wind up
at another side of the nonagon. Pair up this second side with the
first one. We have now created a pair of parallel nonagon sides.

Here’s an illustration of how this works in the case of a hexagon, which
can indeed be split up into parallelograms. The blue lines are a pair
‘matched up’ hexagon sides, and the red lines illustrate the sequence of
parallelogram sides connecting them; the parallelograms shaded in are the
ones we’re ‘jumping across’ when we construct our sequence of sides. Note
that no matter which sequence of interior parallelogram sides you chose,
the matching of the outer sides would be the same!

Note that this process by definition creates a pair of parallel nonagon sides.
Since the nonagon is convex, we can’t have any more than 2 sides parallel
to one another. This means that we’ll be able to pair up each side with
precisely one other parallel side. However, this implies that the number
of sides of a nonagon is even, which is clearly a contradiction!

By the way, note taht if the nonagon doesn’t have to be convex, we’d be
able to have more than 2 sides that are parallel to each other, and the
above argument doesn’t work. Indeed, there exist non-convex nonagons
which can be cut into parallograms – try to think of example!
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7. Consider a football conference with 13 teams. Is it possible to schedule
games so that each team plays exactly 9 games within the conference?

Solution: It’s impossible. Let’s proceed by contradiction. Let gi be the
number of games played by team i. Note that in the sum g1+g2+· · ·+g13,
each game counted twice: if a game was between team i and team j, then
it was counted both in gi and gj . Therefore, this sum must be even.

However, we’re assuming that gi = 9 for each i in {1, 2, . . . , 13}. This
means that g1 + g2 + · · · + g13 = 9 × 13 which is odd. This is clearly
impossible, so we get a contradiction.

8. (2002, A3) Let n ≥ 2 be an integer and Tn be the number of nonempty
subsets S of {1, 2, 3, . . . , n} with the property that the average of the
elements of S is an integer. Prove that Tn − n is always even.
Note: Ask me if you don’t know what a set is!

Solution: The idea here is to pair up the non-empty subsets of {1, 2, . . . , n}
whose average is an integer.

First of all, clearly the subsets {1}, {2}, {3}, . . . , {n} satisfy the property
that the average of their elements is an integer. We’re going to put these
subsets aside. Since there are n of them, that leaves us precisely Tn − n
subsets to pair off.

Here’s how the pairing works. Let S is a subset whose average is an
integer; let that average be called k. If S does not contain k, then pair it
up with S ∪ {k}; conversely, if S contains k, pair it up with S/{k}. Note
that putting the average of a set into a set doesn’t change the average,
and neither does taking it away; as such, we’re pairing up sets with the
same average, and hence clearly are pairing up sets with integer averages.
Furthermore, since we’re avoiding the one-element sets, we won’t pair up
anything with the empty set.

This pairing is easiest to see with an example. Let n = 5. Then, here’s
the pairing for all eligible sets:

{1, 3} ↔ {1, 2, 3}
{2, 4} ↔ {2, 3, 4}
{1, 5} ↔ {1, 3, 5}
{3, 5} ↔ {3, 4, 5}

{1, 2, 4, 5} ↔ {1, 2, 3, 4, 5}

As noted above, all we’re doing to create pairs is to either take away the
average from the set, or put it into the set. As yet another example, for
n = 7, the set {2, 3, 7} doesn’t contain its average 4, and hence would be
paired up with {2, 3, 4, 7}; on the other hand, the set {4, 5, 6} contains its
average 5, and hence would be paired up with {4, 6}.
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Since we’ve managed to pair up all the subsets which don’t contain one
element, we’ve shown that Tn − n is even, as required!

9. (2008, A2) Alan and Barbara play a game in which they take turns filling
entries of an initially empty 2008× 2008 array. Alan plays first. At each
turn, a player chooses a real number and places it in a vacant entry. The
game ends when all the entries are filled. Alan wins if the determinant of
the resulting matrix is nonzero; Barbara wins if it is zero. Which player
has a winning strategy?
Note: Ask me if you don’t know much about determinants: I can easily
summarize all that’s required here!

Solution: Here, Barbara has the winning strategy. It’s quite simple. Pair
up column 1 with column 2. If Alan puts an x into the ith entry of column
1, Barbara counters this by putting an x into the ith entry of the column
2. Conversely, if Alan puts an x into the ith entry of column 2, Barbara
will put an x into the ith entry of column 1. If Alan writes anything
outside of columns 1 and 2, Barbara does whatever she wants, except that
she’s not allowed to write in columns 1 and 2 either.

It should be clear that at the end of the game, this strategy leads to column
1 being precisely the same as column 2. But we know that matrices with
two identical columns have determinant 0: therefore, Barbara wins!
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