The Pigeonhole Principle

1. Show that if we take $n+1$ numbers from the set $\{1,2, \ldots, 2 n\}$, then some pair of numbers will have no factors in common.
2. Show that if we take $n+1$ numbers from the set $\{1,2, \ldots, 2 n\}$, then there will be some pair in which one number is a multiple of the other one.
3. Given 5 points in the plane with integer coordinates, show that there exists a pair of points whose midpoint also has integer coordinates.
4. During a month with 30 days a baseball team plays at least a game a day, but no more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games.
5. Show that among any five points inside an equilateral triangle of side length 1 , there exist two points whose distance is at most $\frac{1}{2}$.
6. Prove that from ten distinct two-digit numbers, one can always choose two disjoint nonempty subsets, so that their elements have the same sum.
7. A checkerboard has 4 rows and 7 columns. A subboard of a checkerboard is a board you can 'cut-out' of the checkerboard by only taking the squares which are between a specified pair of rows and a specified pair of columns. Here's an example of a subboard, with squares shaded in red:

Now, suppose that each of the 28 squares is colored either blue or white. Show that there is a subboard all of whose corners are blue or all of whose corners are white.
Here's an example of a coloring: see if you can find a subboard with four corners of the same color!

8. (2000 Putnam) Let a_{j}, b_{j}, c_{j} be integers for $1 \leq j \leq N$. Assume that for each j, at least one of a_{j}, b_{j}, c_{j} is odd. Show that there exist integers r, s, t such that $r a_{j}+s b_{j}+t c_{j}$ is odd for at least $\frac{4 N}{7}$ values of $j, 1 \leq j \leq N$.
9. (2006 Putnam) Prove that for any set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of real numbers, there exists a non-empty subset S of x and an integer m such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

Note: If you find the notation hard to read, come talk to me: it's actually not saying anything difficult at all!
10. (1993 Putnam) Let $x_{1}, x_{2}, \ldots, x_{19}$ be positive integers each of which is less than or equal to 93 . Let $y_{1}, y_{2}, \ldots, y_{93}$ be positive integers each of which is less than or equal to 19. Prove that there exists a (nonempty) sum of some x_{i} 's equal to a sum of some y_{j} 's

