Useful Polynomial Facts

1. If $P(x)$ is a polynomial of degree n in one variable, with complex coefficients, then it factors into linear terms:

$$
P(x)=C\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)
$$

where r_{1}, \ldots, r_{n} are the roots of $P(x)$ - these are often complex numbers.
2. If $P(x)$ is a polynomial in one variable, and $P(a)=0$, then $P(x)$ is divisible by $x-a$: that is, there exists $Q(x)$ such that

$$
P(x)=(x-a) Q(x)
$$

3. A polynomial of degree n in one variable has at most n different roots.
4. If $P(x)$ is a polynomial of degree n in one variable with real coefficients, then $P(x)$ factors as a product of linear and quadratic terms with real coefficients.
5. If $P(x)$ and $D(x)$ are polynomials in one variable, then we can write

$$
P(x)=Q(x) D(x)+R(x)
$$

where the degree of $R(x)$ is less than the degree of $D(x)$. Here, $R(x)$ stands for the remainder of $P(x)$ when divided by $D(x)$.
6. In case anyone doesn't remember, here's the quadratic formula: the roots of $a x^{2}+b x+c=0$ are

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

7. The set of polynomials of degree n is a vector space with basis $\left\{1, x, \ldots, x^{n}\right\}$; as this makes clear, it has dimension $n+1$.
8. Let $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, with roots $r_{1}, r_{2}, \ldots, r_{n}$. That is,

$$
P(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)
$$

Then, we have that

$$
\begin{aligned}
r_{1}+r_{2}+\cdots+r_{n} & =(-1) a_{n-1} \\
\vdots & \\
r_{1} r_{2} \ldots r_{n} & =(-1)^{n} a_{0}
\end{aligned}
$$

(Figure out the remaining relationships by expanding out $\left(x-r_{1}\right)(x-$ $\left.r_{2}\right) \cdots\left(x-r_{n}\right)$ and comparing coefficients - they are a bit cumbersome to write down!)

