Separable Differential Equations

If we have a differential equation in $y=f(x)$ that can be rearranged as:

$$
\frac{d y}{d x}=g(y) h(x)
$$

then we have the following (illegal looking but correct!) way to solve it:

$$
\begin{aligned}
\frac{1}{g(y)} d y & =h(x) d x \\
\Rightarrow \int \frac{1}{g(y)} d y & =\int h(x) d x
\end{aligned}
$$

If you can actually do the indefinite integral and solve for y, we have a solution to the differential equation. Don't forget the arbitrary constant when integrating!

Example: Solve $f^{\prime}(x)=f(x)^{2} x^{3}$.
Solution: Rewriting this with y instead of $f(x)$ and $\frac{d y}{d x}$ instead of $f^{\prime}(x)$, we get

$$
\begin{aligned}
\frac{d y}{d x} & =y^{2} x^{3} \\
\Rightarrow \frac{1}{y^{2}} d y & =x^{3} d x \\
\Rightarrow \int \frac{1}{y^{2}} d y & =\int x^{3} d x+C \\
\Rightarrow-\frac{1}{y} & =\frac{x^{4}}{4}+C
\end{aligned}
$$

Thus, solving, we get that

$$
y=-\frac{1}{x^{4} / 4+C}
$$

where C can be anything.

