Homework 1

1. For the random walks represented in the following diagrams, calculate the distributions of X_{1}, X_{2}, X_{3} and X_{4}.
(a) $[5 \mathrm{pts}]$ Let $X_{0}=1$.

(b) $[5 \mathrm{pts}]$ Let the probability of each arrow be $1 / 2$; let $X_{0}=2$.

2. Draw examples of random walks with the following properties.
(a) [5 pts] There is no limiting distribution no matter what X_{0} is.
(b) $[5 \mathrm{pts}]$ There is a limiting distribution no matter what X_{0} is, but it depends on the value of X_{0}.
(c) [5 pts] There is no limiting distribution if $X_{0}=1$, but there's a limiting distribution if $X_{0}=2$.
3. Define the following matrices:

$$
A=\left[\begin{array}{ccc}
-2 & 3 & 0 \\
1 & 2 & 3
\end{array}\right], B=\left[\begin{array}{cc}
0 & -1 \\
4 & 1 \\
3 & 2
\end{array}\right], C=\left[\begin{array}{cc}
-3 & 4 \\
1 & 1
\end{array}\right], D=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Calculate the quantities in the questions below, or explain why it's impossible.
(a) $[2 \mathrm{pts}] A-B$.
(b) $[2 \mathrm{pts}] A B+C^{3}$.
(c) $[2 \mathrm{pts}] B A$.
(d) $[2 \mathrm{pts}] A B C$.
(e) $[2 \mathrm{pts}] A^{2}+B^{2}$.
4. (BONUS) [5 pts] Write down two sequences of coin flips - one which you generate by writing down a sequence of 20 coin flips "from your head" which is designed to look random, and another for which you use an actual coin to generate 20 flips. Make a note to yourself stating which sequence is truly random. You will get points for this if I can't guess which one is which!

