Homework 3

1. What is the transition matrix of the following random walk, if the probability of each arrow is $1 / 2$?

2. Consider the following random walk on pairs (a, b) where each of a and b is either 0 or 1 : that is, on $\{(0,0),(0,1),(1,0),(1,1)\}$. The rule is as follows: when we're at (a, b), we stay in place with probability $(a+b) / 4$. The remaining probability is split equally between going to $(1-a, b)$ and ($a, 1-b$).
For example, if we're at $(1,1)$, we stay at $(1,1)$ with probability $1 / 2$, move to $(0,1)$ with probability $1 / 4$ and move to $(1,0)$ with probability $1 / 4$.
(a) Write down an ordering for the states of this random walk and find the transition matrix under this ordering.
(b) Let P be the transition matrix from part (a). Use Matlab to calculate a high power of this matrix. Would you guess this random walk has a limiting distribution? If so, write down what you think it is up to 3 decimal places.
3. Consider a random walk on the states $a_{1}, a_{2}, \ldots a_{n}$ as in class. Assume that we know that

$$
P^{2}\left(a_{i}, a_{j}\right)=\mathbb{P}\left(a_{i} \xrightarrow{2 \text { steps }} a_{j}\right) \text { and } P^{3}\left(a_{i}, a_{j}\right)=\mathbb{P}\left(a_{i} \xrightarrow{3 \text { steps }} a_{j}\right)
$$

for all i and j. (That is, we know the identity we proved in class for $m=2$ and 3.) Use only these facts to show that

$$
P^{5}\left(a_{i}, a_{j}\right)=\mathbb{P}\left(a_{i} \xrightarrow{5 \text { steps }} a_{j}\right)
$$

4. Prove that $1^{2}+2^{2}+\cdots+m^{2}=\frac{m(m+1)(2 m+1)}{6}$ for all positive integers m using induction.
5. [BONUS] What's wrong with the following induction argument?

Claim: All horses are the same color.
We use induction: we show that any m horses are the same color for any positive integer m.

Base step: For $m=1$, it's clear that one horse is the same color as itself.

Inductive step: Assume any m horses are the same color, and let's show that any $m+1$ horses are the same color. Line the $m+1$ horses in a row. Then, the first m horses in this row are the same color (by assumption), and so are the last m horses. Since they overlap in the middle horses, all $m+1$ horses must be the same color. Thus, we're done.

